PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of the Influence of Evaporation and Evapotranspiration on the Volume of Sludge Accumulation in the Sludge Drying Beds

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
At present, the sludge drying beds of the Kyiv wastewater treatment plants are operated as a sludge accumulator in an emergency mode, practically without free volume. The purpose of the work was to determine the equation for the evaporation losses calculation from sludge drying beds and the required free volume for sludge accumulation for the next 7 years. The required free volume was calculated using the water budget method which takes into account evaporation from the water surface and evapotranspiration during the vegetation. The total losses from sludge drying beds is 1076 mm/year in normal year and is 920 mm/year in a cold year. The required free volume was calculated considering the trend of increasing average temperature over the last decade and considering the significant environmental risk. A correction was made for one unfavourable year with cold summer and warm winter and an additional rain rate of 1% probability. The additional free volume required is 3.24 million m3 for 7 years if all three sludge drying beds are operated.
Słowa kluczowe
Rocznik
Strony
63--69
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
  • Department of Water Supply and Sewage, Fuculty of Engineering System and Ecology, Kyiv National University of Construction and Architecture, 31, Povitroflotsky Avenue, Kyiv, 03037, Ukraine
  • Department of Water Supply and Sewage, Fuculty of Engineering System and Ecology, Kyiv National University of Construction and Architecture, 31, Povitroflotsky Avenue, Kyiv, 03037, Ukraine
Bibliografia
  • 1. Allen R. G. 2000. Using the FAO – 56 dual crop coefficient method over an irrigated region as part of an evapotranspiration inter comparison study. Journal of Hydrology, 229(1–2), 27–41.
  • 2. Anda A., Teixeira da Silva J. A., Soos G. 2014. Evapotranspiration and crop coefficient of common reed at the surroundings of Lake Balaton Hungary. Aquatic Botany, 116, 53–59.
  • 3. Anda A., Soos G., Teixeira da Silva J. A., KozmaBognár V. 2015. Regional evapotranspiration from a wetland in Central Europe, in a 16-year period without human intervention. Agricultural and forest meteorology. 205, 60–72.
  • 4. Brix H. and Arias C.A. 2017. Sludge Dewatering and Mineralization in Sludge Treatment Reed Beds. Water. Special Issue Constructed Wetlands for Water Treatment: New Developments, 9(3), 160, 17–24.
  • 5. Herbst M., Kappen L. 1999. The ratio of transpiration versus evaporation in reed belt as influenced by weather conditions. Aquatic Botany, 63(2), 113–125.
  • 6. Kolecka K., Obarska-Pempkowiak H., Gajewska M. 2018. Polish experience in operation of sludge treatment reed beds. Ecological Engineering, 120, 405–410.
  • 7. Milani M., Toscano A. 2013. Evapotranspiration from pilot-scale constructed wetlands planted with Phragmites australis in a Mediterranean environment. Journal of Environmental Science and Health, Part A, 48 (5), 568–580.
  • 8. Milani М., Marzo А., Toscano А., Consoli S., Cirelli G.L, Ventura D. and Barbagallo S. 2019. Evapotranspiration from Horizontal Subsurface Flow Constructed Wetlands Planted with Different Perennial Plant Species. Water, 11, 2159.
  • 9. Nielsen, S. 2007. Sludge treatment and drying reed bed systems. Ecohydrology & Hydrobiology, 7 (3–4), 223–234.
  • 10. Shereshevsky A.I., Sinitskaya L.K. 2000. Assessment of changes in evaporation from the water surface in Ukraine. Trudy UkrNDGMI, 248, 67–76.
  • 11. Stefanakis A. I., Tsihrintzis V. A. 2011. Dewatering mechanisms in pilot-scale Sludge Drying Reed Beds: Effect of design and operational parameters. Chemical Engineering Journal, 172 (1), 430–443.
  • 12. Tokuo Yano, Masatomo Nakayama, Kazuhiro Yamada, Akiko Inoue-Kohama, Shinya Sato, Keijiro Enari 2017. Influence of Growth of Reeds on Evapotranspiration in Horizontal Subsurface Flow Constructed Wetlands. Environment and Ecology Research, 5(6), 427–435.
  • 13. Uggetti E., Argilaga A., Ferrer I., García J. 2012. Dewatering model for optimal operation of sludge treatment wetlands. Water Research, 46(2), 335–344.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-55b19eaa-d885-4b6f-8231-92dbcfd74e06
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.