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Abstract: We present a digital signature scheme with secretly
embedded warning. The embedded warning is a protection mech-
anism in case of restraint or blackmail. Extending ordinary digi-
tal signatures we propose schemes where a signer, approached by a
powerful adversary that demands handing over a signing key, can
disclose his private key. In our solution the signer is able to generate
a feigned key indistinguishable from the genuine one. Then such a
key can be used to embed a special warning message within a sig-
nature to indicate coercion. Such warnings can be transferred via
subliminal channel to some trusted authority.
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1. Introduction

1.1. Motivation

In the classical approach to digital signatures, the security of a scheme relies
exclusively on secrecy of signer’s private key. If this key is compromised, then
signatures are no longer secure. No security specialist disputes words of the
world’s most famous convert hacker Kevin Mitnick: people are the weakest link
in the system security. Users are vulnerable to a number of attacks employing
social engineering, computational power advantage or more sophisticated black-
bag cryptoanalysis. Often, people do not even realize that their most precious
data – private key, is stolen. And little can be done by theoretical cryptographers
to prevent such scenarios from happening. Alas, recent years have brought
worrisome examples of data coercion where individuals are perfectly aware of
this as information is forcibly seized. In the most extreme case, keys can be

∗The work was partially supported by the grant from National Center for Research and
Development no 023/R/ID3/2012/02.

†Submitted: January 2013; Accepted: October 2013



806 K. Durnoga, J. Pomyka la & T. Trabszys

literally beaten out from victims. This is euphemistically called the rubber-

hose cryptoanalysis. Other than that, legal regulations in certain countries,
like The Regulation of Investigatory Powers Act in the UK, entitle appropriate
authorities to demand handing over encryption keys. With a caveat that refusal
may be penalized, e.g., with a few years of imprisonment.

A handful of practical solutions that can protect users in the aforementioned
scenarios have been proposed. These, for instance, include encrypting filesys-
tems with an additional feature of hidden volumes. Using the popular True-
Crypt software one can easily create one or more decoy filesystem layers, with
an encrypted material of minor importance that can be revealed to adversary to
deceive him, and a proper layer with some valuable data beneath. It works like
a double-bottom, or rather multi-bottom, hat where only the upper bottom is
exposed if needed. This can be viewed as some kind of steganography that hides
the very fact that some classified data is in play. A similar approach is taken in
the Rubberhose filesystem (Dreyfus, no date) which is specially suited for polit-
ical dissidents susceptible to rubber-hose cryptoanalysis. A fresh new idea has
been introduced by Geambasu et al. (2009). The authors present a distributed
self-destructing storage where data is encrypted using some random key, then
the key is split into pieces using the well-known secret sharing schemes, and
these parts get spread across a P2P network. The original key is discarded, and
so a user has to download pieces to reconstruct his files. Moreover, distributed
key parts are erased after some timeout and afterwards the encrypted data is
rendered useless.

A somewhat more theoretical treatment on this matter has been given by
Canetti et al. (1996)(see also the work by Klonowski et al., 2008). They propose
an equivocal encryption where an encryptor is offered a possibility to open a
ciphertext in multiple ways. In particular, when approached by an attacker, one
can disclose a counterfeit key and claim that it is genuine with only a slim risk
that the cat is out of the bag and the attacker knows the hoax. This is called a

deniable encryption. We elaborate on this topic in the forthcoming sections.

1.2. Our solution

In this paper we address a problem that is quite similar to the one solved
by a deniable encryption. But it exists in the other part of the public key
cryptography, i.e., in the world of signature schemes. We consider what could
happen if, at a certain moment, a signer, say, Alice would be somehow forced
to hand over her private signing key to an adversary – a party that knows the
signature scheme and all former signatures issued by the signer? Or to issue valid
signatures on messages of the adversary’s choice? The main purpose of ours is
to give a signature scheme with the core property of being blackmail secure.
Namely, Alice should be able to transfer a message to some trusted authorities
subliminally alerting that a signature has been coerced. Such “a call for help”
must be completely hidden from the point of view of the adversary, which can
be quite a powerful entity. Thus, we introduce a notion of an embedded secret
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signature (ESS).

We summarize several informal requirements for an embedded secret signa-
ture scheme below. Such a scheme should satisfy the following conditions:

• an ordinary signature receiver, say, Bob is able to verify correctness of
a signature, but both types of signatures are considered valid by him:
these assembled voluntarily and these coerced by an adversary;
• when Alice is forced by the adversary to create a signature, she can leak

information subliminally that the signature is coerced;
• nobody, even the signer, except for some fixed trusted authority is able to

extract the information about coercion from a signature; in particularly,
the adversary cannot distinguish between both types of signatures even
under the assumption that he possesses signatures issued in the past by
Alice;
• with an overwhelming probability the coercer cannot craft a signature

that is considered as a voluntary one by the trusted party (even though the
adversary might be able to produce a correct signature, which is acceptable
for Bob, on an arbitrary message), notwithstanding the fact of having
access to previously intercepted signatures issued by Alice.

Clearly, no cryptographic solution can prevent the adversary from blocking
the entire communication between Alice and the trusted party. However, it
is reasonable to assume that the adversary wants to make use of the coerced
signatures and will present them to some third party, e.g., a bank. In this case
that party can contact the trusted authority to verify whether these signatures
are legitimate.

The idea leading to our solution scheme that meets requirements sketched
above is to establish a new, shared key K between Alice and the trusted au-
thority. The ability of hiding an embedded secret in a signature is assured if
only K is kept secret. Still, the adversary can demand K from Alice but now
she may present a fake key instead of the real one. If the data Alice gives to
the adversary is coherent, then by no means can he tell whether the given key
matches K or not. Thus, Alice risks nothing here.

A downside of the solution we propose is that it introduces a substantial
overhead factor and signatures produced by our scheme may be quite long in
order to ensure an acceptable level of security for the signer. This disadvantage
is inherited from the construction of a deniable encryption by Canetti et al.
(1996), which we use internally. A problem of constructing a more efficient
deniable encryption scheme, that offers sufficiently high security and deniability,
remains open (see the discussion at the end of Section 2. Our security proof
works in the random oracle model (Bellare and Rogaway, 1993).

1.3. Related work

In the recent years several concepts of digital signature security that concern
compromising signer’s private key have been developed. One idea avails evo-
lution of secret keys in subsequent periods of time. The adversary that seized
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signer’s secret key in one period is not able to forge signatures assigned to the
previous period. Such schemes, called forward secure signatures, defined by
Bellare and Miner (1999), only include a secret key updating algorithm and the
corresponding public key remains unchanged. A somewhat more general ap-
proach was presented in the work of Itkis (2003), where the idea of key evolving
signature was considered. Here, an additional divergence test was introduced.
It can provide a suitable tamper evidence proving key exposure. The construc-
tion is generic and relies on combinatorial methods, but the distinction between
forger-generated and legitimate signatures is not possible.

On the other hand, we may have a forgery of signature which is not caused
by key coercion but rather the computational power of the adversary. In such
an approach the idea of the fail-stop signatures has been invented by Pfitzman
and Waidner (1991). Here, the legitimate signer can construct only one of
many possible signatures. The adversary can generate all the signatures but
can not determine which one is produced by the legitimate signer. In this
connection security of the signature can be broken if either the legitimate signer
can construct a signature that he can later prove to be a forgery, or the adversary
with an unbounded computational power succeeds to construct a signature such
that the legitimate signer can not prove to be counterfeit. Obviously, the fail-
stop signature does not offer any help if signer’s secret key is exposed to the
adversary.

Another approach addresses the so called coercive exposures of private key.
The monotone signature schemes (Naccache, Pointcheval and Tymen, 2002)
allow the verification algorithm to be updated after attack so that signatures
forged by the adversary are not valid according to the current verification al-
gorithm. The solution proposed by H̊astad et al. (2000) applies a subliminal
channel to inform a receiver that a signature was issued under duress. The
corresponding protocol was called backward-malleable funkspiel scheme. Here,
in the key setup algorithm two secret keys s1, s2 and a sequence of random
bits are generated and shared between the signer and the receiver. The receiver
uses a key swapping algorithm to replace the correct configuration of keys by a
fake one. A verification algorithm allows the receiver to decide whether a sub-
sequent message mi was signed with the aid of the corresponding secret key si.
This scheme, although very practical, admits, after a break-in, some forgeries
with a non-negligible probability. Consequently, it does not satisfy our security
requirements formulated in Sections 3.1.1 and 3.1.2 below. It is worth saying
that a very attractive digital signature with secretly embedded warning scheme
based on the Diffie–Hellman key exchange idea is proposed independently by
Kubiak and Kuty lowski (2013).

1.4. Paper outline

First, we briefly recall the deniable encryption scheme. The ideas from the work
of Canetti et al. (1996), of key importance for our paper, are summarized in
Section 2. Then we describe a security model for ESS in Section 3 and present



Digital signature with secretly embedded warning 809

the signature scheme in Section 4. The soundness proof follows in Section
5. Plugging the deniable encryption into the well-known subliminal channel
construct of Simmons yields an example of a modified ESS in Section 6. Some
notes on possible applications of ESS form the final part of this work.

2. Deniable encryption

Our scheme is built upon a scheme of deniable encryption. This neat concept
has been introduced by Canetti et al. (1996). Their motivation flows from
the following scenario. Suppose that Alice encrypts a message and sends it to
Bob. After some period of time she can be asked or even forced, i.e., coerced
by an adversary that demands information by force or being obliged by some
law-abiding authorities to do so, to unveil a plaintext message together with all
random choices involved in the encryption process. The authors are concerned
in the situation, and this is quite similar to our case, where Alice, for her own
good, cannot refuse. She has to obey and present some at least real-looking
data. Ideally, Alice would be able to craft some new fake message that fits to
the original one. The “real-looking” term means that the adversary gets per-
suaded by this data, and he does not realize that plaintext Alice has given him
is a fake one. In particularly, a senseless content is not quite plausible here. Also
note that all the ciphertexts previously transmitted to Bob could have been in-
tercepted by the attacker, and so it may serve as some kind of commitment. The
adversary can easily verify if data Alice has presented matches the ciphertext.

Let M = {0, 1}ℓ, for some parameter ℓ, be a space of plaintext messages.
The explicit statement of the problem sketched above is: given a (determin-
istic) encryption algorithm E : M× {0, 1}∗ → {0, 1}v (such that E(m, r) is a
ciphertext of a message m using a pregenerated randomness r ∈ {0, 1}∗ for
some fixed parameter v) and two distinct messages m1,m2 ∈ M, is it possible
to compute r1, r2 ∈ {0, 1}

∗ such that E(m1, r1) = E(m2, r2)? In fact, we want
to allow picking a fake message a posteriori, i.e., not at the time a ciphertext
is generated, but rather when an adversary demands to reveal the data. Also
the fake message should have some reasonable content as it is unlikely that an
attacker accepts a senseless message even if the resulting ciphertext matches
the one produced from the real message. So, the question becomes: given E,
m1 6= m2, r1, is it possible to generate r2 such that E(m1, r1) = E(m2, r2)?

At the first sight it seems unlikely that the answer be ’yes’. One can point
out some obvious obstacles like: how can we assure that a receiver is able to
correctly decrypt a ciphertext if two distinct messages can be encrypted to the
same string — how can he distinguish between them? However, it turns out
that, under some additional assumptions, construction of a scheme that meets
the deniable encryption requirements presented above is obtainable. Canetti et
al. (1996) have shown how an ingenious idea of translucent sets can be applied
to create a provably secure deniable encryption scheme. Yet, it should be noted
that there exists some practical difficulties that may prevent such a construction
from being adopted.
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We now give an informal definition of a translucent set and show, following
the original work of Canetti et al. (1996), deniable encryption algorithms built
upon such a set. We say that a function ǫ = ǫ(t) is negligible in a security
parameter t if ǫ(t) vanishes faster than the inverse of any polynomial of t.

Definition 2.1 Let t be a parameter and d(t) be a polynomial. A set St ⊂
{0, 1}t together with an associated trapdoor information dt ∈ {0, 1}

d(t) is said

to be translucent iff for some sufficiently large l = l(t) all of the following four

assertions hold:

• #St ≤ 2t−l;

• there exists a polynomial time algorithm that returns a random element

from St, such that the distribution of algorithm’s output is indistinguish-

able from the uniform one;

• for any polynomial-time distinguisher D the probability that D tells apart

a random element of {0, 1}t from random element of St is 1/2 + ǫ, where
ǫ is negligible in t;
• there exists a deterministic polynomial-time algorithm that given x ∈
{0, 1}t and dt decides whether x ∈ St.

Intuitively, St is a small set, when compared to the size of {0, 1}t, and one can
effectively generate random elements of St. On the other hand, St should be
large enough to make enumerating all elements from St virtually impossible.
Moreover, without knowing the secret dt it is infeasible to distinguish random
elements from {0, 1}t and St. However, using the trapdoor information dt, one
can easily tell if a given element belongs to St or not.
There are several constructions of sample translucent sets proposed by Canetti
et al. (1996). Two of them rely on the existence of a trapdoor permutation,
say f : {0, 1}s → {0, 1}s for some s that will be determined shortly. Let
B : {0, 1}s → {0, 1} denote a corresponding hard-core bit predicate for f . Now,
if we relate t, s and l in such way that t = s + l, where t and l = l(t) have
exactly the same meaning as in Definition 2.1, we can define

St =
{
x0‖b1‖b2 . . . bl ∈ {0, 1}

t : x0 ∈ {0, 1}
s, b1, b2, . . . , bl ∈ {0, 1},

B
(
f (−i)(x0)

)
= bi for each i = 1, . . . , l

}
,

where f (−i)
≔ f−1 ◦ · · · ◦ f−1

︸ ︷︷ ︸

i times

is a composition of permutation inverse f−1.

Note that it is easy to generate a random x ∈ St — it suffices to pick xl ∈ {0, 1}
s

at random and to compute

xi−1 ≔ f(xi) and bi ≔ B(xi) (1)

for i = l down to 1 iteratively. Then x0‖b1‖b2‖ . . . ‖bl ∈ St.

The translucent set’s property of being indistinguishable from random ele-
ments manifests its potential when applying it to deniable encryption. Let us
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fix St temporarily. In the basic scheme, the encryption algorithm simply splits a
plaintext message m ∈M = {0, 1}ℓ into independent bits and the encryption is
conducted for each bit separately (resulting ciphertexts are concatenated to get
ciphertext for m). In order to generate a ciphertext for bit b = 0 the algorithm
simply outputs a random element from {0, 1}t, whilst for b = 1 it should return
a random element from St. Throughout this paper we refer to strings drawn
uniformly from {0, 1}t and from St as R-elements and S-elements, respectively.

We keep in mind that the encryption function introduced in Section 2 was
E : M× {0, 1}∗ → {0, 1}v, where the second parameter corresponds to source
of randomness and there is no additional randomness in E. Here we change
it slightly and replace {0, 1}∗ with {0, 1}ℓt. Encrypting b = 0 simply means
returning a corresponding substring of randomness passed to E. For b = 1 this
substring may serve as a seed for a generator returning S-elements, e.g., by
using (1).

Decrypting a given ciphertext for any party possessing dt is straightforward
and boils down to determining whether given string is an R- or S-element. It
is worth noting that decrypting an encrypted b = 1 will always succeed, but
for b = 0 it may happen, with probability 1/2l, that the decryption will be
erroneous, since an R-element can also belong to St. Opening an encryption
means presenting all random choices used to generate a target ciphertext and
pointing whether given string has been picked out as an R- or S-element. When
a ciphertext for b = 1 is opened, a convincing proof of the fact that the resulting
element was drawn from St can be carried by Alice. This is be done by unveil-
ing x0 and b1, b2, . . . , bl computed in the backtracking process (1). Of course,
there is no such a compact confirmation possible for b = 0. It is also clear
that ciphertext can be opened dishonestly. For b = 1 Alice may claim that the
corresponding ciphertext is an R-element that does not belong to St. However
lying in the opposite direction is, in this basic scheme, hardly feasible (chances
that an R-element x is in St are slim and even if it happened by coincidence,
the adversary could additionally demand the aforementioned evidence that x
had been computed as in (1)). One can easily get around this limitation by
extending the encryption scheme.

Let us fix a positive integer n. To encrypt a bit b, pick a random j such that
0 ≤ j ≤ n and j ≡ b (mod 2). The ciphertext for b now consists of exactly n
random strings from {0, 1}t — the first j consecutive S-elements are followed
by n− j R-elements. The encryptor can reveal the correct j and present proofs
for all S-elements as before to persuade which bit has been encrypted. But if
Alice is deceitful she can simply flip the parity of j and claim that it was j − 1
instead of j that was chosen in the first step of the encryption. Consequently,
the jth element of a ciphertext is declared to be an R-element. Of course, such
allegements can only be made if only the initial, i.e., the real one, value j was
greater than 0. Otherwise Alice can be caught red-handed.

The last outlined algorithm for encrypting a single bit with security parame-
ters t, s and n is called the parity scheme. This encryption may be viewed as an
extension of a public encryption scheme. Here, the publicly known parameters,
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like the one-way permutation f and its hard-core predicate B, given, e.g., as
Boolean circuits, play the role of a public key. The trapdoor dt is, in turn, a
private key. Below, we use the capital letters E and D to denote the encrypt-
ing and decrypting algorithms for the parity scheme without writing these keys
explicitly.

The following definition, which is borrowed from Canetti et al. (1996), sum-
marizes the properties of deniable encryption schemes and provides a crite-
rion to compare them. Traditionally, we say that two distribution ensembles
U = {Uk}k∈N and V = {Vk}k∈N are δ(k)-close, for some function δ supported on
natural numbers, if for every polynomial-time distinguisher D and large enough
k we have that

∣
∣Pr

[
D (Uk) = 1

]
− Pr

[
D (Vk) = 1

]∣
∣ < δ(k).

To express the fact that U and V are computationally indistinguishable, which

is when δ(k) is negligible in k, we write that U
c
≈ V . Also, let COM(m, rA, rB)

denote a communication transcription between Alice and Bob when transmitting
an encrypted message m ∈M where rA and rB are random values used by Alice
(for encrypting) and Bob (for decrypting) respectively. By COM(m) we refer to
a random variable describing COM(m, rA, rB) when rA and rB are uniformly
and independently chosen.

Definition 2.2 An encryption protocol between Alice and Bob is said to be

δ(k)-sender-deniable if

• the probability that Bob decrypts a ciphertext erroneously is negligible in

k;

• for any m1,m2 ∈M we have that COM(m1)
c
≈ COM(m2);

• there exists an efficient algorithm that given COM(m1, rA, rB) and m1,m2, rA,
for any m1,m2 ∈ M and uniformly chosen values of rA and rB , produces
a value r′A such that variables

(
m2, r

′
A,COM(m1, rA, rB)

)
and

(
m2, rA,COM(m2, rA, rB)

)

are δ(k)-close.

Canetti et al. (1996) proved that the following proposition about the parity
scheme holds with respect to Definition 2.2:

Theorem 2.1 If a trapdoor permutation exists then the parity scheme is a 4
n
-

sender-deniable encryption scheme.

The fact that the scheme offers only deniability of order 1/O(n) is a major
disadvantage. Recently, Dürmuth and Freeman (2011) have come out with a
µ(n)-sender-deniable encryption scheme where µ(n) is negligible in n. However,
Peikert and Waters (2011) have pointed out a gap in their proof and shown
an attack demonstrating that the construction is incorrect. Apparently, the
problem of achieving deniability of negligible level is still open.
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3. Embedded secret signature model

3.1. The model

Let SS = (KeyGen,Σ, V, V ∗) be a public-key signature scheme with security
parameter k (for example, k could be the bit length of a signature). KeyGen is
a key generation algorithm, V is a public verification algorithm, and V ∗ is a ver-
ification algorithm with a trapdoor information dt known only by the trusted
authority T . Any particular signer A with his public-private key pair (upk, usk)
signs messages using the usk key in Σ algorithm. A signature obtained in this
way satisfies both verification algorithms, i.e., V and V ∗. We require that A
does not communicate with T , except for the KeyGen algorithm. Everywhere
below, we assume that the verification algorithm V uses the public key upk, and
V ∗ may have access to both: upk and dt.

When referring to V as a “public” algorithm we mean that any signature
receiver can obtain V and verify if a signature has been assembled using the pri-
vate key of A , which could have been coerced by adversary. V ∗ enables reading
a secretly embedded message and thus T must conceal the trapdoor dt.

Let E be a third party, who can adaptively query A to honestly sign any
chosen message. Then A is asked or forced to show his private signing key to E ,
but this time A can try to deceive E . A signature scheme is embedded secret
secure iff it is infeasible for E to determine, in polynomial time in the security
parameter k, whether the signatures forged with the obtained private key usk′

would satisfy the verification algorithm V ∗.

3.2. Security statements

In this section we describe formal security statements. The embedded secret
security is divided into two properties: embedded secret indistinguishability
and embedded secret unforgeability. First, we introduce a signing OA :

• SigQuery(m) : the signing oracle OA returns a signature σ of m under
the corresponding private key usk

and the description of a simulator Sim:

• Setup(usk) : given a private key usk and public data Sim initializes

• UskQuery() : Sim chooses a random bit b
$
← {0, 1} and returns

UskQuery(b)
• UskQuery(b) : Sim returns uskb, where usk0 = usk (honest private key)

and usk1 6= usk (dishonest private key). If b = 1 then usk1 is generated
by Sim. (From the security definitions below, for an embedded secret
secure signature scheme, signatures made even with the dishonest private
key must pass the public verification algorithm).

Note that Sim does not communicate with T . A signature scheme is em-
bedded secret secure if there exists a simulator Sim matching the following two
requirements.
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3.2.1. Embedded secret indistinguishability

At the beginning, a random instance of signature scheme Params is generated.
In the second step, private-public key pair (upk, usk) is generated. The adver-
sary E , breaking the embedded secret indistinguishability of public key upk is
allowed to query a signing oracle OA and finally ask the simulator Sim for a
challenge and prove that E is able to guess whether the uskb given by Sim is
honest.

The advantage in breaking embedded secret indistinguishability of an adver-
sary E , given access to OA and a simulator Sim, is

AdvESI(E ,Sim) ≔ Pr











Params
$
← Setup(),

(upk, usk)
$
← KeyGen(),

b̃ = b : EOA (Params, upk),

uskb
UskQuery()
← Sim(usk),

b̃← E (uskb)











− 1/2.

The probability is taken over the coin tosses of the Setup algorithm, the
key-generation algorithms, of the oracle, of b and the algorithm E .

A signature scheme is embedded secret indistinguishable (with respect to
the simulator Sim) if, for every polynomial-time algorithm E , the value of
AdvESI(E ,Sim) is negligible in the security parameter k. In other words - there
exists no polynomial-time algorithm E with a significant advantage AdvESI(E ,Sim).

3.2.2. Embedded secret unforgeability

At the beginning a random instance of signature scheme Params is generated.
In the second step, private-public key pair (upk, usk) is generated. The adver-
sary E breaking the embedded secret unforgeability of public key upk is allowed
to query a signing oracle OA . Finally E queries the simulator Sim for dishonest
private key (bit b is set: b = 1) and forges signature for a chosen, fresh message.
E ’s advantage in breaking the embedded secret unforgeability is defined as

AdvESU(E ,Sim) ≔ Pr











Params
$
← Setup(),

(upk, usk)
$
← KeyGen(),

V ∗(σ) = YES : EOA (Params, upk),

usk1
UskQuery(b=1)

← Sim(usk),
σ ← E (usk1)











.

The probability is taken over the coin tosses of the Setup algorithm, the
key-generation algorithms, the oracle, and the algorithm E .

A signature scheme is embedded secret unforgeable if for any polynomial-
time algorithm E the value AdvESU(E ,Sim) is negligible in the security param-
eter k. In other words, there exists no polynomial-time algorithm E with a
significant advantage AdvESU(E ,Sim).
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4. The Scheme

In this section we propose a construction of an embedded secret signature
scheme. First, however, we outline problems that arise in a simple and intuitive
approach to building such a signature.

4.1. Näıve approach

The most straightforward way to embed a warning is to place it in a message
that gets signed afterwards. To make it look innocuous this warning could
be appended as some random bits to the base message, e.g., to pad it to some
prescribed block length. We note that such a padding should vary when multiple
messages are signed, i.e., different messages should not use the same padding.
Another way is utilizing random components that come as parts of a signature
scheme. For instance, we can put an alert message into a random exponent, call
it a, of the El Gamal signature (see Section 6 where the El Gamal scheme is
recalled). In this case the signer A and the trusted party T should first agree
on a space of exponents that indicate a coercion. However, if the space is small,
say, of constant size, the adversary can easily issue a correct signature that does
not contain a warning after obtaining A ’s private key and picking a random a.
He can safely hope that a that he has chosen does not fall into the space of
alerting exponents. Even if we swap roles of warning-indicator and warning-free
exponents, so that A picks a from a prechosen, shared, yet still small, space if
he does not want to place an alarm in a signature, there is still a problem with
such a scheme. First of all, the adversary can use some kind of repetition attack.
When warning-free exponents do not depend on a message that gets signed,
the adversary can simply reuse exponents from previously issued signatures
that are supposed to contain no warning. This implies that a should also be
correlated with a message. For instance, we can let a = H(M ⊕K), where M is
a message to sign, K is a secret key known to A and T , and H denotes a hash
function. A difficulty arising here is that a itself may serve as a commitment.
Namely, the adversary may want to determine if K handed over to him is
genuine by demanding K and a from the previously issued signatures. The key
observation towards our solution is that the signer has to be able to “deny” all
such commitments and present any fake K. This justifies turning our attention
to deniable encryption schemes.

4.2. Construction

Our scheme is based on almost any randomized signature scheme

SSinner =
(
Kg, Sig,Ver

)
.

The only additional requirement is that such a signature, more specifically: the
signing function Sig, must utilize some significant part of randomness source
in a non-trivial way (the randomness is given as R argument passed to Sig).
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SSinner is thus an inner scheme, and we build an embedded secret scheme
SS = (KeyGen,Σ, V, V ∗) on the top of it.

Let ℓ, n, t and s be parameters (the exact meaning of these should be clear
from context they appear in) and M = {0, 1}ℓ be (as in Section 2) a space of
allowable messages. We shall assume that for all sufficiently large choices of

t there exists a family
{
S
(i)
t

}

i
of translucent sets S

(i)
t ⊂ {0, 1}t. Let H be a

random oracle computing the hash function.

Setup phase (KeyGen):
• T picks up a random string K from {0, 1}ℓ and gives it to the signer A ;

• T chooses S
(i)
t randomly and publishes the associated deniable encryption

algorithm E; trapdoor information dt, used in the decryption algorithm
D, is kept secret;
• A fixes her/his signature function Sig using key generation algorithm Kg()

from signature scheme SSinner. Sig(M,R) forms a signature on message
M using randomness R;
• a verification algorithm Ver (returning either YES or NO) corresponding to

Sig is published.
It should be noted that the key K is shared between parties T and A .

Security of the system is assured as long as K remains secret, so that nobody
except T and A , knows K.

Signature (Σ):
In order to sign a message M ∈M the party A computes

R = E
(
H(M ⊕K), r

)

S = Sig
(
M,R

) (2)

using a random seed r fed into the deniable encryption function E.
The signature on M is then

σ = (M,R, S). (3)

Verification (V and V ∗):
• given σ′ = (M ′, R′, S′) the standard verification algorithm V checks if the

following holds:

Ver(M ′, S′)
?
= YES

• given σ′ = (M ′, R′, S′) the opening algorithm V ∗ applies V and if σ′ is
correct, i.e., when V (σ′) = YES, then V ∗ does the additional checking:

H(M ′ ⊕K)
?
= D(R′)

using the trapdoor dt to decrypt R′ using D.
The signature is claimed to be forged, i.e., A was forced to sign M ′ by the
adversary, iff the above condition does not hold.
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5. Security

In this section we prove that our construction preserves inner signature scheme’s
unforgeability properties (security against, e.g., existential forgery under known
message attack, total break under chosen-message attack, etc.; see Goldwasser
et al., 1988), and that our new scheme is embedded secret secure.

The security of the system is based on the fact that V ∗ is not known to the
legitimate signer and therefore he would not be able to produce the irrefutable
proof (for any third party) that a signature was produced with a real key.

Intuitively, the adversary should know nothing about K (in particular, he
must not know H(M ⊕K) — a commitment for K when some signed message
M is fixed). Then, the signer A may very well try to fool the adversary. The
signer has to be consistent in his testimonies, nonetheless. In order to do this,
A can choose a single K ′ that A can claim to be the legitimate shared key. Now,
if A wants to convince the adversary that some signature does not contain an
embedded warning, A can open a given R = E

(
H(M⊕K), r

)
(for some random

seed r and a fixed message M) as H(M ⊕ K ′) claiming that R is equal to
E
(
H(M ⊕K ′), r′

)
(for some r′). The deniable encryption has to allow virtually

all openings but the parity scheme based encryption algorithm discussed in
Section 2 has this property. The adversary cannot check that the claim is invalid
since he does not see H(M ⊕K) and R looks completely random. The signer
shows him the following values: M , K ′, and demonstrates how E

(
H(M⊕K ′), r′

)

was produced using r′.
We formalize this idea below.

5.1. Inner signature’s unforgeability preservation

From the definition of encryption E, R is a concatenation of t-bit strings from
sets S and R. R is a set of random t-bit strings and S-elements are indistin-
guishable from R-elements. Therefore, the distribution of E taken over the set
of messages is indistinguishable from the random distribution.

The quasi-random element R = E
(
H(M ⊕K), r

)
is indistinguishable from

a random element for any third party, therefore forging (with respect to the
unforgeability property) the signature

σ =

(

Sig(M,R), E
(
H(M ⊕K), r

)
)

, where R = E
(
H(M ⊕K), r

)

is at least as hard as forging the inner signature Sig(M,R) with R generated
according to the protocol, i.e., randomly.

5.2. Embedded secret

We introduce the simulator Sim that can be understood as an algorithm in the
signer’s mind. Given all signer’s private data it generates dishonest answers in
case of coercion (e.g. blackmail). If the signer A was forced by the adversary E to
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reveal messages, private keys and random elements used in signing the messages,
he would use the Sim algorithm. Sim generates the following output:
• honest private keys and random elements for the inner signature
• random K̃
• for each given signature σ =

(
Sig(M,R), E(H(M ⊕ K), r)

)
return an

element r̃ such that:

E
(
H(M ⊕K), r

)
= E

(
H(M ⊕ K̃), r̃

)
.

As argued by Canetti et al. (1996) it is feasible to generate such an element
with probability 1− 1

n
.

Now we show that the scheme is embedded secret indistinguishable (3.2.1)
and embedded secret unforgeable (3.2.2).

5.2.1. Embedded secret indistinguishability

The signer A passes the output generated by the Sim to E . Since K and K̃
(of length ℓ) were chosen randomly, they are indistinguishable for E . Now, we
have to show that honest encryptions are indistinguishable from dishonest ones.
First, we introduce more convenient variables:

m1 = H(M ⊕K) and

m2 = H(M ⊕ K̃),

plus bm1

i and bm2

i (for i = 1, . . . , ℓ), which indicate consecutive bits of m1 and
m2, respectively. We also write rA = rA1 ‖ . . . ‖r

A

ℓ and r′
A

= r′A1 ‖ . . . ‖r
′A
ℓ to denote

bit representation of r and r̃, respectively. Similarly, by rBi for i = 1, . . . , ℓ we
mean corresponding verifier’s random bits.

From the deniability of encryption (see 2.2), for each i = 1, . . . , ℓ, i.e., for
each bit of a “message” we have that

(
bm2

i , r′Ai ,COM(bm1

i , rAi , r
B

i )
)

and
(
bm2

i , rAi ,COM(bm2

i , rAi , r
B

i )
)

are 4/n-close.
Since m1 and m2 have the same distribution (m1 and m2 are generated by

the hash function H), we have that

(
bm2

i , r′Ai ,COM(bm1

i , rAi , r
B

i )
)

and
(
bm1

i , rAi ,COM(bm1

i , rAi , r
B

i )
)

are 4/n-close.
According to the statement above, probability that a polynomial distin-

guisher will not distinguish an encrypted bit (which is a sequence of n elements
from {0, 1}t) of m1 and m2 is at least 1− 4/n. Since m1 has length ℓ, every bit
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is encrypted independently, hence probability that it will not distinguish any of
ℓ bits is at least (1 − 4/n)ℓ. Therefore we have that

(
m2, r

′
A
,COM(m1, rA , rB )

)
and

(
m1, rA ,COM(m1, rA , rB )

)
(4)

are 1− (1− 4/n)ℓ-close.

We would like to determine the security parameter kI = kI(n, ℓ), such that
for every constant C:

1−

(

1−
4

n

)ℓ

<
1

kCI
, (5)

when n, ℓ→∞.

We prove that the inequality (5) holds for any fixed ǫ, δ > 0 when we set
ℓ ≤ n1−δ and kI ≤ exp

(
(lnn)1−ǫ

)
. Assume that n > n0(ǫ, δ, C) is sufficiently

large and let ℓ ≤ n1−δ. By the binomial formula, we have:

1−

(

1−
4

n

)ℓ

≤ 1−

(

1−
4

n

)n1−δ

<
5

nδ
< k−C

I ,

provided kI ≤ exp
(
(lnn)1−ǫ

)
.

Hence, given (4), it is infeasible for the adversary to judge whether m2 and
r̃ were the honest message and a random value used by A . Therefore, it is
also infeasible for him to judge whether K̃ and r̃ were actually used by A in
signing messages. It is infeasible with respect to the security parameters kI , s
(describing the trapdoor permutation f : {0, 1}s → {0, 1}s) and t, both used in
the construction of translucent set (as given by Canetti et al., 1996). As a result,
for any polynomial-time algorithm E the corresponding value of AdvESI(E ,Sim)

is negligible in kESS = min{kI , t, s}. Note that the length of the signature grows
faster than the security parameter.

5.2.2. Embedded secret unforgeability

An adversary knowing only K̃ is not able to compute H(M ⊕K) for any fresh
message M , since K and K̃ were chosen at random, and H is a random oracle.
Therefore, generating a valid encryption of the unknown text H(M ⊕ K) is
infeasible for the adversary.

We summarize the results above with the following theorem:

Theorem 5.1 Under the assumption that for all sufficiently large choices of

t there exists a family
{
S
(i)
t

}

i
of translucent sets S

(i)
t ⊂ {0, 1}t, our scheme,

based on any signature scheme SSinner, is embedded secret secure and preserves

security properties of the inner scheme SSinner.
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6. Modified example

The noticeable disadvantage of the signature presented in Section 4 is that (3)
contains an explicit reference to random bits R generated by a deniable encryp-
tion algorithm. The purpose of such a binding is to ensure that the trusted
party T is able to apply V ∗ and extract an embedded secret message. However,
for Bob, i.e., any person that uses the standard verification algorithm V , placing
R in σ can be superfluous. In some cases we have a possibility to get rid of the
passing parameters that could be unnecessary at the first sight (of course we do
not want to eliminate R completely — it will still be sealed in S = Sig

(
M,R

)
).

The construction is built upon El Gamal signature (El Gamal, 1985). In
his classical work Simmons (1985) demonstrated that there exists a broad sub-
liminal channel that can be hidden in a signature. We briefly present his idea
here. Recall that El Gamal signature operates on a cyclic group Z

∗
p, where p

is some large prime (having several additional properties that make signatures
cryptographically secure, in particularly p − 1 has a large prime factor). Let
g be a generator of Z∗

p. By x ∈ Z
∗
p−1 we denote the signer’s private key with

y = gx ∈ Z
∗
p being the associated public key. We assume that p, g and y are

publicly known. To sign M ∈ M the party A simply picks a ∈ Z
∗
p−1 at random

and computes

α ≔ ga mod p

β ≔
(
h(M)− xα

)
a−1 mod p− 1,

where h : M→ Z
∗
p−1 is a collision-resistant hash function. A signature is a tuple

(α, β) and its validity can be verified by any party by checking if the following
holds

yααβ ?
= gh(M)

in Z
∗
p.

To embed a secret message m ∈ Z
∗
p−1, the party A can alter this scheme and

use the random part of (α, β) as a container for m, so to speak. Namely, instead
of picking a random a, A can set α ≔ gm mod p. The verification phase of the
innocuous message M remains the same. But anyone who possesses the key x
can recover m =

(
h(M) − xα

)
β−1 mod p− 1 sent subliminally (provided β is

invertible mod p− 1). Here, the capability of reading from the subliminal chan-
nel comes as a trade-off for sharing signer’s “private” data x. Another assertion
that should be made here is that some significant part of m should consist of
random bits to make guessing m virtually impossible. Then to extract m it is
essential to know x, since computing a discrete logarithm in Z

∗
p is believed, in

general case, to be hard.
In our embedded secret signature scheme we can adopt Simmon’s construc-

tion in a straightforward way. Let Sig be El Gamal signature (in some group
Z
∗
p) with x being the “private” key of A . In fact, in the setup phase A should

transfer x in secure way to T . Signing means computing S = Sig(M,R) =
(
α, (h(M)− xα)R−1

)
, where α = gR mod p and R is a ciphertext of a deniably
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encrypted secret message indicating whether signature has been forced or not.
Thus, both R and S are given in the same way as in (2). However, in opposi-
tion to (3), now the signature is only σ = (M,S), i.e. it does not contain an
explicit reference to R (in fact, an acquaintance of R implies extracting x from
signatures, so in this particular case placing R in σ would compromise the whole
scheme). Also, note that E proposed before produces a stream of bits that are
indistinguishable from random bits. Using E as a blinding function is required
in order to make an attacker unable to read subliminal information even when
A is forced to unveil x to the adversary.

7. Possible applications

The presented cryptographic primitive has a natural appearance in the signa-
ture schemes with the trusted party involved in the verification process. A
typical example concerns the situation when the trusted party legitimates a
voluntary signature, or is able to discover the embedded secret in a signature.
In some applications the corresponding trusted authority should be involved in
the preparation of a suitable “proof of coercion”.

Let us consider as an example the e-delegation of signing rights (the corre-
sponding proxy signature primitive has been defined in the work by Mambo et
al., 1996). Assume that the original signer, who delegates his signing ability to
the proxy signer, is equipped with a suitable verification algorithm V ∗. Then,
in the case when the proxy signer is forced to sign a given message, or simply to
expose his private key to the adversary, the corresponding signature would be
discovered by the designator as a coerced one. Obviously, the strong unforge-
ability condition (see, e.g., the work by Boldyreva et al., 2003) should imply
that the designator is not able to generate voluntary signatures on behalf of the
proxy signer.

Another application towards the group signature schemes, introduced by
Chaum and van Heyst (2003), may regard the manager as being equipped with
the suitable verification algorithm V ∗, since he is the party that can recognize
the identity of signer being coerced. Here the full traceability condition (see,
e.g., Bellare and Miner, 1999) should imply that the manager is not able to
compute the voluntary signature on behalf of a group member.

A similar functionality could be also adopted in a more involved context of
fair exchange protocols. The hybrid solution (Pomyka la and Trabszys, 2009)
joining the idea of anonymous-signer signatures (Yao and Tamassia, 2006) and
verifiably encrypted signature (Boneh and Gentry, 2003) is another useful ap-
pearance of the signature scheme with the trusted party involved in the verifi-
cation process V ∗.

The concept of the subliminally embedded warning can be also adopted to
the certificateless systems (Pomyka la, 2009). Unlike the typical Id-based digital
signature scheme, this approach avoids regarding the Private Key Generator
(PKG) as the trusted party T . Instead, PKG generates a verification key related
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to the secret key created by the signer. However, the shared knowledge between
T and the signer allows T to detect an embedded secret in a corresponding
signature (see the work by Ho lyst and Pomyka la, 2010).

Let us also quote another approach to the construction of secretly embed-
ding warning in digital signature, based on the Diffie-Hellman key agreement
protocol as proposed by Kubiak and Kuty lowski (2013). Their scheme is simpler
and more efficient, but does not apply to some well known signature schemes. In
particular, our approach is easily adopted to universal padding scheme for RSA
(Coron et al., 2002) and Feige–Fiat–Shamir (1988) signature scheme. In the first
case the corresponding scheme is safe even if the same pair private/public keys
are used for signing and encrypting. In the second one the additional (sublim-
inal) information is created on the basis of the two additional primes dividing
the modulus, which are known only by the trusted party T (see Pomyka la, 2009;
Ho lyst and Pomyka la, 2010). Summing up, the deniable encrypting approach
might be useful even in the case of the partial leakage of signer’s private key.
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