PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Studies of catalytic coal gasification with steam

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the promising processes, belonging to the so-called clean coal technologies, is catalytic coal gasification. The addition of a catalyst results in an increased process rate, in which synthesis gas is obtained. Therefore, the subject of this research was catalytic gasification of low-ranking coal which, due to a high reactivity, meets the requirements for fuels used in the gasification process. Potassium and calcium cations in an amount of 0.85, 1.7 and 3.4% by weight were used as catalytically active substances. Isothermal measurements were performed at 900°C under a pressure of 2 MPa using steam as a gasifying agent. On the basis of kinetic curves, the performance of main gasification products as well as carbon conversion degree were determined. The performed measurements allowed the determination of the type and amount of catalyst that ensure the most efficient gasification process of the coal ‘Piast’ in an atmosphere of steam.
Słowa kluczowe
Rocznik
Strony
97--102
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Energy and Fuels, al. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Science and Technology, Faculty of Energy and Fuels, al. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Energy and Fuels, al. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • 1. Ding, L., Zhou, Z., Guo, Q., Huo, W. & Yo, G. (2015). Catalytic effects of Na2CO3 additive on coal pyrolysis and gasification. Fuel 142, 134-144. DOI: 10.1016/j.fuel.2014.11.010.
  • 2. Li, W.W., Li, K.Z., Qu, X., Zhang, R. & Bi, J.C. (2014). Simulation of catalytic coal gasification in a pressurized jetting fluidized bed: Effects of operating conditions. Fuel Proc. Technol. 126, 504-512. DOI: 10.1016/j.fuproc.2014.06.006.
  • 3. Sharma, A., Takanohashi, T., Morishita, K., Takarada, T. & Saito, I. (2008). Low temperature catalytic steam gasifi cation of HyperCoal to produce H2 and synthesis gas. Fuel 87(4-5), 491-497. DOI: 10.1016/j.fuel.2007.04.015.
  • 4. Namkung, H., Yuan, X., Lee, G., Kim, D., Kang, T.J. & Kim, H.T. (2014). Reaction characteristics through catalytic steam gasification with ultra clean coal char and coal. J. Energy Inst. 87(3), 253-262. DOI: 10.1016/j.joei.2014.03.003.
  • 5. Tang, J. & Wang, J. (2016). Catalytic steam gasification of coal char with alkali carbonates: A study on their synergic effects with calcium hydroxide. Fuel Proc. Technol. 142, 34-41. DOI: 10.1016/j.fuproc.2015.09.020.
  • 6. Qi, X., Guo, X., Xue, L. & Zheng, C. (2014). Effect of iron on Shenfu coal char structure and its influence on gasification reactivity. J. Anal. Appl. Pyrol. 110, 401-407. DOI: 10.1016/j.jaap.2014.10.011.
  • 7. Parthasarathy, P. & Narayanan, K.S. (2014). Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield - A review. Renew Energ. 66, 570-579. DOI: 10.1016/j.renene.2013.12.025.
  • 8. McKee, D.W. (1979). Catalysis of the graphite-water vapor reaction by alkaline earth salts. Carbon 17(5), 419-425. DOI: 10.1016/0008-6223(79)90058-7.
  • 9. Lang, R.J. (1989). Anion effects in alkali-catalysed steam gasification. Fuel 65(10), 1324-1329. DOI: 10.1016/0016-2361(86)90097-9.
  • 10. Wang, J., Yao, Y., Cao, J. & Jiang, M. (2010). Enhanced catalysis of K2CO3 for steam gasification of coal char by using Ca(OH)2 in char preparation. Fuel 89(2), 310-317. DOI: 10.1016/j.fuel.2009.09.001.
  • 11. Otto, K. & Shelef, M. (1977). Catalytic steam gasification of graphite: effects of intercalated and externally added Ru, Rh, Pd and Pt. Carbon 15(5), 317-325. DOI: 10.1016/0008-6223(77)90038-0.
  • 12. Hung, X., Zhang, F., Fan, M. & Wang, Y. (2015). Chapter 7 - Catalytic Coal Gasification. Sus. Catal. Proc. 179-199. DOI: 10.1016/B978-0-444-59567-6.00007-8.
  • 13. Ratchahat, S., Kodama, S., Tanthapanichakoon, W. & Sekiguchi, H. (2015). CO2 gasification of biomass wastes enhanced by Ni/Al2O3catalyst in molten eutectic carbonate salt. Int. J. Hydrogen Energ. 40(35), 11809-11822. DOI: 10.1016/j. ijhydene.2015.06.059.
  • 14. Lee, I.G., Nowacka, A., Yuan, C.H., Park, S.J. & Yang, J.B. (2015). Hydrogen production by supercritical water gasification of valine over Ni/activated charcoal catalyst modified with Y, Pt, and Pd. Int. J. Hydrogen Energ. 40(36), 12078-12087. DOI: 10.1016/j.ijhydene.2015.07.112.
  • 15. Kopyscinski, J., Rahman, R., Gupta, R., Mims, C. & Hill, J. (2014). K2CO3 catalyzed CO2 gasifi cation of ash-free coal. Interactions of the catalyst with carbon in N2 and CO2 atmosphere. Fuel 117(Part B), 1181-1189. DOI: 10.1016/j.fuel.2013.07.030.
  • 16. Kim, Y.K., Park, J.I., Jung, D., Miyawaki, J., Yoon, S.H. & Mochida, I. (2014). Low-temperature catalytic conversion of lignite: 1. Steam gasification using potassium carbonate supported on perovskite oxide. J. Ind. Eng. Chem. 20(1), 216-221. DOI: 10.1016/j.jiec.2013.04.004.
  • 17. Waheed, Q., Wu, C. & Williams, P. (2015). Hydrogen production from high temperature steam catalytic gasification of bio-char. J. Energy Inst. 89(2), 222-230. DOI: 10.1016/j. joei.2015.02.001.
  • 18. Supramono, D., Tristantini, D., Rahayu, A., Suwignjo, R. & Chendra, D. (2014). Syngas Production from Lignite Coal Using K2CO3 Catalytic Steam Gasification with Controlled Heating Rate in Pyrolysis Step. Procedia Chem. 9, 202-209. DOI: 10.1016/j.proche.2014.05.024.
  • 19. Mazumber, J. & Lasa, H. (2014). Fluidizable Ni/La2O3- γAl2O3 catalyst for steam gasification of a cellulosic biomass surrogate. Appl. Catal. B. 160-161, 67-79. DOI: 10.1016/j. apcatb.2014.04.042.
  • 20. Marchand, D.J., Schneider, E., Williams, B.P., Joo, Y.L., Kim, J., Kim, G.T. & Kim, S.H. (2015). Physical and chemical changes of coal during catalytic fluidized bed gasification. Fuel Proc. Technol. 130, 292-298. DOI: 10.1016/j.fuproc.2014.10.039.
  • 21. Lu, T., Li, K.Z., Zhang, R. & Bi, J.C. (2015). Addition of ash to prevent agglomeration during catalytic coal gasification in a pressurized fluidized bed. Fuel Proc. Technol. 134, 414-423. DOI: 10.1016/j.fuproc.2015.02.024.
  • 22. Spiro, C.L., McKee, D.W., Kosky, P.G. & Lamby, E.J. (1983). Catalytic CO2-gasification of graphite versus coal char. Fuel 62(2), 180-184. DOI: 10.1016/0016-2361(83)90194-1.
  • 23. Spiro, C.L., McKee, D.W., Kosky, P.G. & Lamby, E.J. (1984). Observation of alkali catalyst particles during gasification of carbonaceous materials in CO2 and steam. Fuel 63(5), 686-691. DOI: 10.1016/0016-2361(84)90167-4.
  • 24. Huhn, F., Klein, J. & Jüntgen, H. (1983). Investigations on the alkali catalysed steam gasification of coal: kinetics and interactions of alkali catalyst with carbon. Fuel 62(2), 196-199. DOI: 10.1016/0016-2361(83)90197-7.
  • 25. Liu, Z.-l. & Zhu, H.-h. (1986). Steam gasification of coal char using alkali and alkaline-earth metal catalysts. Fuel 65(10), 1334-1338. DOI: 10.1016/0016-2361(86)90099-2.
  • 26. Phuhiran, C., Takarada, T. & Chaiklangmuang, S. (2014). Hydrogen-rich gas from catalytic steam gasification of eucalyptus using nickel-loaded Thai brown coal char catalyst. Int. J. Hydrogen Energ. 39(8), 2649-3656. DOI: 10.1016/j. ijhydene.2013.12.155.
  • 27. Wu, X., Tang, J. & Wang, J. (2016). A new active site/ intermediate kinetic model for K2CO3-catalyzed steam gasification of ash-free coal char. Fuel 165, 59-67. DOI: 10.1016/j. fuel.2015.10.034.
  • 28. Namkung, H., Yuan, X., Lee, G., Kim, D., Kang, T.J. & Kim, H.T. (2014). Reaction characteristics through catalytic steam gasification with ultra clean coal char and coal. J Energy Inst. 87(3), 253-262. DOI: 10.1016/j.joei.2014.03.003.
  • 29. Porada, S, Czerski, G., Dziok, T., Grzywacz, P. & Makowska, D. (2015). Kinetics of steam gasification of bituminous coals in terms of their use for underground coal gasification. Fuel Proc. Technol. 130, 282-291. DOI: 10.1016/j.fuproc.2014.10.015.
  • 30. Porada, S. & Rozwadowski, A. (2014). Kinetic study of steam gasification of bituminous coal at elevated pressures. Przem. Chem. 93(3), 384-387. DOI: 10.12916/przemchem.2014.384.
  • 31. Saber, J.M., Falconer, J.L. & Brown, L.F. (1986). Interaction of potassium carbonate with surface oxides of carbon. Fuel 65, 1356-1359. DOI: 10.1016/0016-2361(86)90103-1.
  • 32. Saber, J.M., Kester, K.B., Falconer, J.L. & Brown, L.F. (1988). A mechanism for sodium oxide catalyzed CO2 gasification of carbon. J Catal. 109, 329-346. DOI: 10.1016/0021-9517(88)90216-3.
  • 33. Matsukata, M., Fujikawa, T., Kikuchi, E. & Morita, Y. (1988). Interaction between potassium carbonate and carbon substrate at subgasification temperature. Migration of potassium into the carbon matrix. Energ Fuel 2, 750-756. DOI: 10.1021/ef00012a006.
  • 34. Wood, B.J. & Sancier, K.M. (1984). The mechanism of catalytic gasification of coal char: a critical review. Catal Rev. 26, 233-79. DOI: 10.1080/01614948408078065.
  • 35. Wang, J., Jiang, M., Yao, Y., Zhang, Y. & Cao, J. (2009). Steam gasification of coal char catalyzed by K2CO3 for enhanced production of hydrogen without formation of methane. Fuel. 88, 1572-1579. DOI: 10.1016/j.fuel.2008.12.017.
  • 36. Mckee, D.W. (1983). Mechanisms of the alkali metal catalysed gasification of carbon. Fuel 62, 170-175. DOI: 10.1016/0016-2361(83)90192-8.
  • 37. Chen, S.G. & Yang, R.T. (1997). Unified mechanism of alkali and alkaline earth catalyzed gasification reactions of carbon by CO2 and H2O. Energ Fuel 11, 421-427. DOI: 10.1021/ef960099o.
  • 38. Wang, J., Sakanishi, K. & Saito, I. (2005). High-Yield Hydrogen Production by Steam Gasification of HyperCoal (Ash- Free Coal Extract) with Potassium Carbonate: Comparison with Raw Coal. Energ Fuel 19, 2114-2120. DOI: 10.1021/ef040089k
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-55ad554e-7a05-4790-9a05-45678b021037
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.