PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The maximum likelihood method for Student’s t-distributed autoregressive model with infinite variance

Identyfikatory
Warianty tytułu
PL
Metoda największej wiarygodności dla modelu autoregresyjnego z rozkładem t-Studenta o nieskończonej wariancji
Języki publikacji
EN
Abstrakty
EN
Discrete-time series models are popular in different applications. The most classical one is the autoregressive moving average (ARMA) time series that is the stationary model. In its classical version, the ARMA model is based on Gaussian distribution. However, the gaussianity is a too simplistic assumption for many real phenomena description, especially when large observations may appear in the data. Thus, we are departing from the assumption of the normal distribution of the data and propose the infinite-variance AR model based on the Student’s t-distribution. We introduce the maximum likelihood method for the estimation of the model’s parameters. The idea is based on the Maclaurin series expansion of the likelihood function. The effectiveness of the proposed approach is demonstrated using Monte Carlo simulations. Finally, the real financial time series are considered by using the presented methodology.
PL
Dyskretne modele szeregów czasowych są popularne w różnych zastosowaniach. Najbardziej klasycznym z nich jest szereg czasowy autoregresyjny średniej ruchomej (ARMA), który jest modelem stacjonarnym. W swojej klasycznej wersji model ARMA jest oparty na rozkładzie normalnym. Jednak założenie o gaussowskiej strukturze jest zbytnim uproszczeniem w przypadku opisu wielu zjawisk rzeczywistych, zwłaszcza gdy w danych mogą pojawić się duże obserwacje. W związku z tym odchodzimy od założenia o normalnym rozkładzie danych i proponujemy model AR o nieskończonej wariancji oparty na rozkładzie t-Studenta o nieskończonej wariancji. W pracy przedstawiamy metodę największej wiarygodności do estymacji parametrów modelu. Pomysł opiera się na reprezentacji funkcji wiarygodności poprzez szereg Maclaurina. Skuteczność proponowanego podejścia została wykazana za pomocą symulacji Monte Carlo. W końcowej części artykułu przedstawione zostały zastosowania zaproponowanej metodologii do opisu danych rzeczywistych.
Rocznik
Strony
133--156
Opis fizyczny
Bibliogr. 41 poz., fot., tab., wykr.
Twórcy
  • Faculty of Pure and Applied Mathematics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław 50-370
  • Faculty of Pure and Applied Mathematics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław 50-370
Bibliografia
  • [1] G. J. Adams and G. C. Goodwin. Parameter estimation for periodic ARMA models. Journal of Time Series Analysis, 16 (2): 127-145, 1995. doi: 10.1111/j.1467-9892.1995.tb00226.x. Cited on p. 134.
  • [2] P. L. Anderson and M. M. Meerschaert. Parameter estimation for periodically stationary time series. Journal of Time Series Analysis, 26 (4): 489-518, 2005. doi: 10.1111/j.1467-9892.2005.00428.x. Cited on p. 134.
  • [3] P. L. Anderson, M. M. Meerschaert, and K. Zhang. Forecasting with prediction intervals for periodic autoregressive moving average models. Journal of Time Series Analysis, 34 (2): 187-193, 2013. doi: 10.1111/jtsa.12000. Cited on p. 134.
  • [4] I. V. Basawa and R. Lund. Large sample properties of parameter estimates for periodic ARMA models. Journal of Time Series Analysis, 22 (6): 651-663, 2001. doi: 10.1111/1467-9892.00246. Cited on p. 134.
  • [5] A. BenSaïda and S. Slim. Highly flexible distributions to fit multiple frequency financial returns. Physica A: Statistical Mechanics and its Applications, 442: 203-213, 2016. doi: 10.1016/j.physa.2015.09.021. Cited on p. 134.
  • [6] A. BenSaïda, S. Boubaker, D. K. Nguyen, and S. Slim. Value-at-Risk under market shifts through highly flexible models. Journal of Forecasting, 37 (8): 790-804, 2018. doi: 10.1002/for.2503. Cited on p. 134.
  • [7] P. Brockwell. Continuous-time ARMA processes. Handbook of statistics, 19: 249-276, 2001. doi: 10.1016/S0169-7161(01)19011-5. Cited on p. 134.
  • [8] P. J. Brockwell and R. A. Davis. Introduction to time series and forecasting, Second Edition. Springer, 2002. Zbl 1355.62001. Cited on pp. 133, 134, 135, 137, 139, and 142.
  • [9] P. J. Brockwell and R. A. Davis. Time series: theory and methods. Springer Science & Business Media, 2013. Zbl 1169.62074. Cited on p. 133.
  • [10] P. J. Brockwell and T. Marquardt. Lévy-driven and fractionally integrated ARMA processes with continuous time parameter. Statistica Sinica, pages 477-494, 2005. URL http://www.jstor.com/stable/24307365. Zbl 1070.62068. Cited on p. 134.
  • [11] P. Franses. Periodicity and Stochastic Trends in Economic Time Series. Oxford University Press, Oxford, 1996. Zbl 0868.62088. Cited on p. 134.
  • [12] C. M. Gallagher. A method for fitting stable autoregressive models using the autocovariation function. Statistics & Probability Letter, 53: 381-390, 2001. doi: 10.1016/S0167-7152(01)00041-4. Cited on p. 135.
  • [13] J. Gao, Z.-Y. Xu, and L.-T. Zhang. Approximating long-memory DNA sequences by short-memory process. Physica A: Statistical Mechanics and its Applications, 388 (17): 3475-3485, 2009. doi: 10.1016/j.physa.2005.06.099. Cited on p. 133.
  • [14] W. S. Gosset. The probable error of a mean. Biometrika 6 (1), pages 1-25, 1908. doi: 10.2307/2331554. Cited on pp. 134 and 137.
  • [15] A. Grzesiek, S. Sundar, and A. Wyłomańska. Fractional lower order covariance-based estimator for bidimensional AR (1) model with stable distribution. International Journal of Advances in Engineering Sciences and Applied Mathematics, 11: 217-229, 2019. doi: 10.1007/s12572-019-00250-9. Cited on p. 135.
  • [16] A. Grzesiek, M. Teuerle, and A. Wyłomańska. Cross-codifference for bidimensional VAR (1) time series with infinite variance. Communications in Statistics - Simulation and Computation, pages 1-26, 2019. doi: 10.1080/03610918.2019.1670840. Cited on pp. 135 and 138.
  • [17] A. Grzesiek, P. Giri, S. Sundar, and A. Wyłomańska. Measures of cross-dependence for bidimensional periodic AR (1) model with alpha-stable distribution. Journal of Time Series Analysis, 41 (6): 785-807, 2020. doi: 10.1111/jtsa.12548. Cited on pp. 135 and 138.
  • [18] C. Hansen, J. McDonald, and P. Theodossiou. Some flexible parametric models for partially adaptive estimators of econometric models. Economics E-Journal, 1 (7): 1-20, 2007. doi: 10.5018/economics-ejournal.ja.2007-7. Cited on p. 134.
  • [19] P. Kruczek, A. Wyłomańska, M. Teuerle, and J. Gajda. The modified Yule-Walker method for alpha-stable time series models. Physica A, 469: 588-603, 2017. doi: 10.1016/j.physa.2016.11.037. Cited on pp. 135 and 138.
  • [20] P. Kruczek, W. Żuławiński, P. Pagacz, and A. Wyłomańska. Fractional lower order covariance based-estimator for Ornstein-Uhlenbeck proces with stable distribution. Mathematica Applicanda, 47 (2): 259-292, 2019. doi: 10.14708/ma.v47i2.6506. Cited on p. 135.
  • [21] A. Lucas. Robustness of the student t based m-estimator. Communications in Statistics - Theory and Methods, 26 (5): 1165-1182, 1997. doi: 10.1080/03610929708831974. Cited on p. 141.
  • [22] A. Makagon, A. Weron, and A. Wyłomańska. Bounded solutions of ARMA models with varying coefficients. Applicationes Mathematicae, 31 (3): 273-285, 2004. doi: 10.4064/am31-3-3. Cited on p. 133.
  • [23] J. B. McDonald, R. A. Michelfelder, and P. Theodossiou. Robust estimation with flexible parametric distributions: estimation of utility stock betas. Quantitative Finance, 10 (4): 375-387, 2010. doi: 10.1080/14697680902814241. Cited on p. 134.
  • [24] C. L. Nikias and M. Shao. Signal processing with alpha-stable distributions and applications. Wiley-Interscience, 1995. URL https://dl.acm.org/doi/10.5555/210666. Cited on p. 134.
  • [25] J. Nowicka. Asymptotic behavior of the covariation and the codifference for ARMA models with stable innovations. Communications in Statistics. Stochastic Models, 13 (4): 673-685, 1997. doi: 10.1080/15326349708807446. Cited on pp. 134 and 136.
  • [26] J. Nowicka-Zagrajek and R. Weron. Modeling electricity loads in California: ARMA models with hyperbolic noise. Signal Processing, 82 (12): 1903-1915, 2002. doi: 10.1016/S0165-1684(02)00318-3. Cited on p. 134.
  • [27] J. Nowicka-Zagrajek and A. Wyłomańska. The dependence structure of PARMA models with α-stable innovations. Acta Physica Polonica B, 38 (1): 3071-3081, 2006. URL http://www.actaphys.uj.edu.pl/fulltext?series=Reg&vol=37&page=3071. Cited on p. 134.
  • [28] M. Peiris and A. Thavansewaran. Multivariate stable ARMA processes with time dependent coeffcients. Metrika 54, pages 131-138, 2001. doi: 10.1007/s001840100127. Cited on p. 138.
  • [29] M. M. Rounaghi and F. Nassir Zadeh. Investigation of market efficiency and financial stability between S&P 500 and London Stock Exchange: Monthly and yearly forecasting of time series stock returns using ARMA model. Physica A: Statistical Mechanics and its Applications, 456: 10-21, 2016. doi: 10.1016/j.physa.2016.03.006. Cited on p. 133.
  • [30] G. Samorodnitsky and M. Taqqu. Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman and Hall, 1994. Zbl 0925.60027. Cited on p. 134.
  • [31] Q. Shao and R. Lund. Computation and characterization of autocorrelations and partial autocorrelations in periodic ARMA models. Journal of Time Series Analysis, 25 (3): 359-372, 2004. doi: 10.1111/j.1467-9892.2004.00356.x. Cited on p. 134.
  • [32] R. Shumway and D. Stoffer. Time Series Analysis and Its Applications With R Examples, Third Edition. Springer, 2016. Zbl 1367.62004. Cited on p. 135.
  • [33] G. Sikora, A. Michalak, Ł. Bielak, P. Miśta, and A. Wyłomańska. Stochastic modeling of currency exchange rates with novel validation techniques. Physica A: Statistical Mechanics and its Applications, 523: 1202-1215, 2019. ISSN 0378-4371. doi: https://doi.org/10.1016/j.physa.2019.04.098. Cited on pp. 134 and 137.
  • [34] S. Slim, Y. Koubaa, and A. Bensaida. Value-at-Risk under Lévy GARCH models: Evidence from global stock markets. Journal of International Financial Markets, Institutions and Money, 46: 30-53, 2017. doi: 10.1016/j.intfin.2016.08.008. Cited on p. 134.
  • [35] D. Szarek, Ł. Bielak, and A. Wyłomańska. Long-term prediction of the metals’ prices using non-gaussian time-inhomogeneous stochastic process. Physica A: Statistical Mechanics and its Applications, 555: 124659, 2020. doi: 10.1016/j.physa.2020.124659. Cited on pp. 134 and 137.
  • [36] P. Theodossiou. Financial data and the skewed generalized t distribution. Management Science, 44 (12-part-1): 1650-1661, 1998. doi: 10.2139/ssrn.65037. Cited on p. 134.
  • [37] B. Troutman. Some results in periodic autoregression. Biometrika, 66: 219-228, 1979. doi: 10.2307/2335652. Cited on p. 134.
  • [38] E. Ursu and K. F. Turkman. Periodic autoregressive model identification using genetic algorithms. Journal of Time Series Analysis, 33 (3): 398-405, 2012. doi: 10.1111/j.1467-9892.2011.00772.x. Cited on p. 134.
  • [39] A. Weron and A. Wyłomańska. On ARMA (1, q) models with bounded and periodically correlated solutions. Probability and Mathematical Statistics, 424: 165-172, 2004. Zbl 1067.62096. Cited on p. 133.
  • [40] C. S. Wong, W. S. Chan, and P. Kam. A studentt-mixture autoregressive model with applicationsto heavy-tailed financial data. Biometrika, 96: 751-760, 2009. doi: 10.1093/biomet/asp031. Cited on p. 135.
  • [41] A. Wyłomańska. Spectral measures of PARMA sequences. Journal of Time Series Analysis, 29 (1): 1-13, 2008. doi: 10.1111/j.1467-9892.2007.00541.x. Cited on p. 134.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-55a7c520-3e04-4787-8777-7a139e67f9c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.