PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analytical Models for Optimal Design of a Trapezoidal Composite Channel Cross-Section

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, several analytical models are presented for the optimal design of a trapezoidal composite channel cross-section. The objective function is the cost function per unit length of the channel, which includes the excavation and lining costs. To define the system, design variables including channel depth, channel width, side slopes, freeboard, and roughness coefficients were used. The constraints include Manning’s equation, flow velocity, Froude number, and water surface width. The Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm was used to solve the optimization problem. The results are presented in three parts; in the first part, the optimal values of the design variables and the objective function are presented in different discharges. In the second part, the relationship between cost and design variables in different discharges is presented in the form of conceptual and analytical models and mathematical functions. Finally, in the third part, the changes in the design variables and cost function are presented as a graph based on the discharge variations. Results indicate that the cost increases with increasing water depth, left side slope, equivalent roughness coefficient, and freeboard.
Rocznik
Strony
118--138
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr., wzory
Twórcy
  • Department of Civil Engineering, Ramsar Branch, Islamic Azad University, Ramsar, Iran
  • Department of Civil Engineering, Ramsar Branch, Islamic Azad University, Ramsar, Iran
Bibliografia
  • 1. Guo, C.Y. and Hughes, W.C. 1984. Optimal channel cross-section with freeboard. Journal of irrigation and drainage engineering 110(3), 304-313.
  • 2. Chow, VT 1959. Open channel hydraulics. New York: McGraw-Hill.
  • 3. Das, A. 2000. Optimal channel cross-section with composite roughness. Journal of irrigation and drainage engineering 126(1), 68-72.
  • 4. Loganathan, GV 1991. Optimal design of parabolic canals. Journal of Irrigation and Drainage Engineering 117(5), 716-735.
  • 5. Swamee, PK 1995. Optimal irrigation canal sections. Journal of Irrigation and Drainage Engineering 121(6), 467-469.
  • 6. Swamee, PK, Mishra, GC and Chahar BR 2000. Comprehensive Design of Minimum Cost Irrigation Canal Sections. Journal of irrigation and drainage engineering 126(5), 322-327.
  • 7. Babaeyan-Koopaei, K., Valentine, EM and Swailes, DC 2000. Optimal design of parabolic-bottomed triangle canals. Journal of Irrigation and Drainage Engineering 126(6), 408-411.
  • 8. Jain, A., Bhattacharjya, RK and Sanaga, S. 2004. Optimal design of composite channels using genetic algorithm. Journal of Irrigation and Drainage Engineering 130(4), 286-295.
  • 9. Chahar, BR 2005 Optimal design of a parabolic canal section. Journal of Irrigation and Drainage Engineering 131(6), 546–554.
  • 10. Bhattacharjya, RK 2006 Optimal design of open channel section incorporating critical flow condition. Journal of irrigation and drainage engineering 132(5), 513-518.
  • 11. Bhattacharjya, RK and Satish, MG 2007. Optimal design of a stable trapezoidal channel section using hybrid optimization techniques. Journal of Irrigation and Drainage Engineering 133(4), 323-329.
  • 12. Reddy, MJ and Adarsh, S. 2010. Chance constrained optimal design of composite channels using meta-heuristic techniques. Water Resources Management 24(10), 2221-2235.
  • 13. Roushangar, K., Alami, MT, Nourani, V. and Nouri, A. 2017. A cost model with several hydraulic constraints for optimizing in practice a trapezoidal cross-section. Journal of Hydroinformatics 19(3), 456-468.
  • 14. Gupta, SK, Mishra, U., Datta, D. and Singh, VP 2018. Fish shoal optimization for identification of the most suitable revetment stone for 138 Somayyeh design of minimum cost earthen canals carrying sediment-laden flow. ISH Journal of Hydraulic Engineering 24(2), 172-189.
  • 15. Han, YC, Easa, SM and Gao, XP 2019. General explicit solutions of most economic sections and applications for trapezoidal and parabolic channels. Journal of Hydrodynamics 31(5), 1034-1042.
  • 16. Farzin, S. and Valikhan Anaraki, M. 2020. Optimal construction of an open channel by considering different conditions and uncertainty: application of evolutionary methods. Journal of Engineering Optimization 16, 1-9.
  • 17. Saplioglu, K., Ozturk, TSK and Acar, R. 2020. Optimization of open channels using particle swarm optimization algorithm. Journal of Intelligent & Fuzzy Systems 39, 399-405.
  • 18. Horton, RE 1993. Separate roughness coefficients for channel bottom and sides. Engineering News Record 111(22), 652-653.
  • 19. Swamee, PK, Mishra, GC and Chahar, BR 2002. Optimal design of transmission canal. Journal of Irrigation and Drainage Engineering 128(4), 234-243.
  • 20. Spall, JC 1998. An overview of the simultaneous perturbation method for efficient optimization. Johns Hopkins Apl. Technical Digest 19(4), 482-492.
  • 21. Pouraminian, M. and Ghaemian, M. 2015. Shape optimisation of concrete open-spandrel arch bridges. Građevinar 67(12), 1177-1185.
  • 22. Pourbakhshian, S. and Ghaemian, M. 2016. Shape optimization of arch dams using sensitivity analysis. KSCE Journal of Civil Engineering 20(5), 1966-1976.
  • 23. Seyedpor, SM, Salajegheh, J., Salajegheh, E. and Gholizadeh, S. 2011. Optimal design of arch dams subjected to earthquake loading by a combination of simultaneous perturbation stochastic approximation and particle swarm algorithms. Applied Soft Computing 11(1), 39-48.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-55a68fbc-a466-4469-9694-6007e8280c0b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.