Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A Nosé-Hoover (NH) type thermostat is considered for Molecular Dynamics (MD) simulations of confined systems. This is based on a generalised velocity of the same generic form as the NH thermostat of Allen and Schmid, [Mol. Sim. 33, 21 (2007)]. An unthermostatted confined region is sandwiched between two walls which are thermostatted. No external shearing is imposed. Non-equilibrium Molecular Dynamics (NEMD) simulations were carried out of the time evolution of the wall and confined region temperature after a jump in temperature of the walls. Relaxation of the confined region temperature to the target value was found to be typically slower than that of the wall. An analysis of the system parameter dependence of the lag time, , and departures from what would be expected from Fourier’s law suggest that a boundary transmission heat flux bottleneck is a significant factor in the time delay. This delayed thermal equilibration would therefore become an important factor when a time-dependent (e.g., oscillatory) temperature or shearing of the walls is implemented using NEMD. Adjustments between the response time of the wall thermostat should be made compatible with that of the rest of the system, to minimise its effects on the observed behaviour.
Słowa kluczowe
Rocznik
Tom
Strony
211--218
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
autor
- Institute of Physics, Poznań University of Technology Piotrowo 3, 60-965 Poznań, Poland
autor
- Institute of Molecular Physics, Polish Academy of Sciences M. Smoluchowskiego 17, 60-179 Poznań, Poland
autor
- Institute of Molecular Physics, Polish Academy of Sciences M. Smoluchowskiego 17, 60-179 Poznań, Poland
autor
- Department of Physics, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
Bibliografia
- [1] W.G. Hoover, Computational Statistical Mechanics (Elsevier, Amsterdam, 1991).
- [2] S. Nosé, A Molecular Dynamics Method for Simulations in the Canonical Ensemble, Mol. Phys. 52, 255 (1984).
- [3] W.G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A 31, 1695 (1985).
- [4] P. Hunenberger, Thermostat Algorithms for Molecular Dynamics Simulations, Adv. Polym. Sci. 173, 105 (2005).
- [5] A. Bulgac, D. Kusnezov, Canonical ensemble averages from pseudomicrocanonical dynamics, Phys. Rev. A 42, 5045 (1990).
- [6] G.J. Martyna, M.L. Klein, M.Tuckerman, Nosé-Hoover chains: The canonical ensemble via continuous dynamics, J. Chem. Phys. 97, 2635 (1992).
- [7] W.G. Hoover, B.L. Holian, Kinetic moments method for the canonical ensemble distribution, Phys. Lett. A 211, 253 (1996).
- [8] A.C. Brańka, M. Kowalik, K.W. Wojciechowski, Generalization of the Nosé-Hoover approach, J. Chem. Phys. 119, 1929 (2003).
- [9] A.C. Brańka, K.W. Wojciechowski, Generalization of Nosé and Nosé-Hoover isothermal dynamics, Phys. Rev. E 62, 3281 (2000).
- [10] H.H. Rugh, Dynamical Approach to Temperature, Phys. Rev. Lett. 78, 772 (1997).
- [11] O.G. Jepps, G. Ayton, D.J. Evans, Microscopic expressions for the thermodynamic temperature, Phys. Rev. E 62, 4757 (2000).
- [12] G. Rickayzen, J.G. Powles, Temperature in the classical microcanonical ensemble, J. Chem. Phys. 114, 4333 (2001).
- [13] C. Braga, K.P. Travis, A configurational temperature Nosé-Hoover thermostat, J. Chem. Phys. 123, 134101 (2005).
- [14] M.P. Allen, F. Schmid, A thermostat for molecular dynamics of complex fluids, Mol. Simul. 33, 21 (2007).
- [15] S. Pieprzyk, D.M. Heyes, Sz. Maćkowiak, A.C. Brańka, Galilean-invariant Nosé-Hoover-type thermostats, Phys. Rev. E 91, 033312 (2015).
- [16] D. Kusnezov, A. Bulgac,W. Bauer, Canonical ensembles from chaos, Ann. Phys. 204, 155 (1990).
- [17] C. Gattinoni, D. M. Heyes, C. D. Lorenz, D. Dini, Traction and nonequilibrium phase behavior of confined sheared liquids at high pressure, Phys. Rev. E 88, 052406 (2013).
- [18] D. M. Heyes, E. R. Smith, D. Dini, H. A. Spikes, T. A. Zaki, Pressure dependence of confined liquid behavior subjected to boundary-driven shear, J. Chem. Phys. 136, 134705 (2012).
- [19] C. Gattinoni, Sz. Maćkowiak, D. M. Heyes, A. C. Brańka, D. Dini, Boundary-controlled barostats for slab geometries in molecular dynamics simulations, Phys. Rev. E 90, 043302 (2014).
- [20] M. Teodorescu, S. Theodossiades, H. Rahnejat, Impact dynamics of rough and surface protected MEMS gears, Tribol. Int. 42, 197 (2009).
- [21] S. Bernardi, B. D. Todd D. J. Searles, Thermostating highly confined fluids, J. Chem. Phys. 132, 244706 (2010).
- [22] B. D. Todd, D. J. Evans, P. J. Daivis, Pressure tensor for inhomogeneous fluids, Phys. Rev. E 52, 1627 (1995).
- [23] S. Butler, P. Harrowell, Simulation of the coexistence of a shearing liquid and a strained crystal, J. Chem. Phys. 118, 4115 (2003).
- [24] J. Petravic, P. Harrowell, The boundary fluctuation theory of transport coefficients in the linear-response limit, J. Chem. Phys. 124, 014103 (2006).
- [25] Sz. Maćkowiak, D. M. Heyes, D. Dini, A. C. Brańka, Nonequilibrium phase behavior and friction of confined molecular films under shear: A non-equilibrium molecular dynamics study, J. Chem. Phys. 145, 164704 (2016).
- [26] X. Yong, L. T. Zhang, Thermostats and thermostat strategies for molecular dynamics simulations of nanofluidics, J. Chem. Phys. 138, 084503 (2013).
- [27] S. De Luca, B. D. Todd, J. S. Hansen, P. J. Daivis, A new and effective method for thermostatting confined fluids, J. Chem. Phys. 140, 054502 (2014).
- [28] D. M. Heyes, The Liquid State, (John Wiley & Sons, Chichester, 1997).
- [29] B.L. Holian, A.F. Voter, R. Ravelo, Thermostatted molecular dynamics: How to avoid the Toda demon hidden in Nosé-Hoover dynamics, Phys. Rev. E 52, 2338 (1995).
- [30] G.E. Valenzuela, J.H. Saavedra, R.E. Rozasn P.G. Toledo, Analysis of energy and friction coefficient fluctuations of a Lennard-Jones liquid coupled to the Nosé-Hoover thermostat, Mol. Simul. 41, 521, (2014).
- [31] S. Nosé, Constant-temperature molecular dynamics, Progress of Theoretical Physics Supplement 103, 1 (1991).
- [32] A.C. Brańka, Nosé-Hoover chain method for nonequilibrium molecular dynamics simulation, Phys. Rev. E 61, 4769, (2000).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-55a24767-a2b0-4587-8e6d-28cc891af7bf