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FREE VIBRATION ANALYSIS OF ISOTROPIC RECTANGULAR PLATES
ON WINKLER FOUNDATION USING DIFFERENTIAL TRANSFORM
METHOD
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A differential transform method (DTM) is used to analyze free transverse vibrations of isotropic rectangular
plates resting on a Winkler foundation. Two opposite edges of the plates are assumed to be simply supported.
This semi-numerical-analytical technique converts the governing differential equation and boundary conditions
into algebraic equations. Characteristic equations are obtained for three combinations of clamped, simply
supported and free edge conditions on the other two edges, keeping one of them to be simply supported.
Numerical results show the robustness and fast convergence of the method. Correctness of the results is shown by
comparing with those obtained using other methods.
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1. Introduction

Rectangular plates are used as structural elements in various technological situations in different
engineering fields, e.g., acronautics, civil, marine, mechanical and optical engineering. Overall performance
of a structure is highly influenced by the dynamic behavior of the plates. Vibrations of these plates have been
analyzed using different techniques, namely, the finite element method (Venkateswara, 1974), the
Superposition-Galerkin method (Gorman, 2000), the meshless method (Chen et al., 2004), the differential
quadrature method (Wang et al., 2006), the singular convolution method (Omer et al., 2010) and the
Rayleigh-Ritz method (Kumar and Lal, 2011), etc. The differential transform method was introduced by
Zhou (1986). This method was used by Arikoglu and Ozcol (2005) to find analytical solutions of differential
or integro-differential equations. It has been successfully applied in the analysis of various vibration
problems (Malik and Allali, 2000; Yalcin et al., 2000; Attarnejad et al., 2010 and Kacar et al., 2011). Using
this method the differential equation governing the free transverse vibrations of the plate and boundary
conditions are transformed into algebraic equations which provide the characteristic equations. These
characteristic equations are solved numerically to obtain first three natural frequencies. The results indicate
that differential transform method is a reliable and fast converging method for the vibration analysis of
rectangular plates.

2. Formulation of the problem

Consider an isotropic rectangular plate of uniform thickness /# with the domain 0 <x<a,0<y<b in
the xy — plane, where a and b are the length and the breadth of the plate, respectively. The x—and y —
axes are taken along the edges of the plate and the axis of z — is perpendicular to the xy — plane. The
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middle surface is z=0 and the origin is at one of the corners of the plate. The plate is resting on a Winkler
foundation having the foundation modulus &, .

The governing differential equation of motion of an isotropic rectangular plate resting on the
Winkler foundation is given as follows

o'w 2 o'w Y o'w

ox? ax2or? 6y4+KW=QZW, 0<X<I, 0<Y<I (2.1)

where X=x/a,Y=y/b, A=a/b, W is the transverse displacement at (X,Y), Kz(kf a4/D) is the
]2(]—v2)pa4co2

ERW’
Assuming the two opposite edges ¥ =0 and Y =1 to be simply supported, the deflection function
can be expressed as follows

foundation modulus parameter and O’ = is the frequency parameter.

W =W (X)sin(mnY) (2.2)

where m is an integer.
Substitution of Eq.(2.2) into Eq.(2.1) leads to

4177 4177
;—Vf—zmznw%—(gz —minh) ! —K)W:O. (2.3)

3. Boundary conditions

Three boundary conditions, namely, SC, SS and SF have been considered where the first letter
represents the boundary condition at the edge X =0 and second one at the edge X = 1. Here C stands for a
clamped edge, S for a simply supported and F for a free edge. The edges ¥ =0 and Y = ] are assumed to be
simply supported. The conditions that should be satisfied at the edges X =0 and X =1 are

W= Z—Z =0, for clamped edge (3.1
_ AW 2 2.2\ .
W= e —U(m A )Wz(), for simply supported edge (3.2)
d’ 2 2,2\ 7 d’w 2 2, 2\dW

—U(m A )W:0, —(2—0)(m A )—:0. for free edge (3.3)
dx? dx? dX

4. The solution

The differential transform method (DTM) is based on the Taylor series expansion. The Taylor series
expansion of a function f(x) may be written as

f@)=3 (x=x) F,
r=0
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where F, = i'(c; {) is called the 7" order differential transform of f(x) about a point x = Xp.
rI\ dx
X=X
Differential transforms of some of the fundamental functions are given in Tab.1.
Table 1
S. No. | Function Differential Transform
f()+g(x) F +G,
2 af (x) afF,
k
3 f(x)g(x) ZFer—r
r=0
k +k)!
4 d f (r ) E‘+k
dxk l"!
Lr=k
5 k ad._,, 8 _, ="
@ roke Sk {O,r;tk.
6 sin(ax + b) a—'Fr sin(rr / 2+ b)
r!
7 cos(ax +b) a—'F, cos(mr/ 2+b)
r!
8 eax ar
r!
9 ff(t)dt Fo=D 51 r0)=0
Taking the differential transform of Eq.(2.3) at X, =0 using Tab.1, we get
r+4! — 2221"+2!— 2 4 454 =
g =2 W,or (97 =m*x2? —K )W, =o0. @.1)
The boundary conditions (3.1)-(3.3) may be transformed as follows
D (X =Xp)' W, =0,
r=0
4.2)
D r(X =X W, =0
r=0
D (X -Xy) W, =0,
r=0
4.3)

ir(r—J)(X—XO)”W =0

r=0

r
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and

ir(r—z)(X—Xo)” 78 —U(mznzkz)i(X—XO)r W. =0,
r=0 r=0
(4.4)

ir(r—z)(r—z)(X—Xo)’*3VI7r —(2—0)(m2n27»2)ir X-x,)"' W =o.
r=0

r=0

The general solution (Malik and Allali, 2000) of Eq.(2.3) can be written as

i (R +dR,")

. r=0,1,2,3.,00, (4.5)

r!
where R =m’n*A? +3Q - K Ry =m’n?)? —\Q7 K.
Rewriting Eq.(4.5) as

(R +dyR,T
W, = , (4.6)
2r!

(d3R]2r+1 n d4R22r+1)
Cr+)!

Wit = 4.7)

Case 1: Simply supported at X=0 and clamped at X=1
Let X, =0. At X=0, Eq.(4.3) becomes

Wy +O0W, +O0Wy +OW; +O0W, +OWs + oo =0,
4.8)
OWy +OW, + Wy + OW; +OWy + OWs + . =0,

i.e., W, =W, =0. Using these values in Eq.(4.5), we get d; =d, =0. It implies W, =0.
For r=0 and 1, Eq.(4.5) gives

and d;R, = (67 —RZZVI_/,)%, d,R, =(RW, —61/173)%

Now, Eq.(4.7) becomes

oo ((6VI73—R22VI71)R12’+(RfVI71—6VI73)R22’)
1750 (2r+1)! -

(4.9)
22 | (RIRT" = RSR}" )W, +6 (R — RS )W
T 20 (2r+1)!
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At X=1, Eqs (4.2) become
Wy + Wy +Ws + e, =0,
Wy +3W5 4+ 5Ws + v =0,
> Wy +6) | —L |W; =0, (4.10)
= @r+1)! = @Cr+D!
((p2p 2r 2p2r [ (p 2r 2r)]
- (R] Ry™ =Ry R, ) — s (RI — R, ) —
> Wy+6) | ~———= ;=0 (4.11)
v (2r)! s (2r)!
The characteristic equation is obtained from the non-trivial condition
0 R 2R 2r R ZR 2r 0 R 2r R 2r
Z( 1 o TRy Ly ) z( TS )
= 2r+1)! = Qr+l)!
N h =0. (4.12)
2p 2 2p2 2 2
i(& Ry =R, Rjr) = (RJr_Rz r)
= (2r)! — (2r)!
Case 2: Simply supported at X=0 and simply supported at X=1
After taking the differential transform, Eqs (4.3) at X=1 can be written as follows
WI + W3 + W5 For = 0,
OW, +6W3 + 20Ws + ..o, =0.
The characteristic equation becomes
0 R 2R 2r R ZR 2r 0 R 2r R 2r
Z( 1 o TRy Ky ) ( TS )
= 2r+1)! = Qr+l)! 0 “.13)
2p 2 2p2 2 2 ' ’
i(& Ry —R, Rjr) = (RJr_Rz r)
py 2r-1n! = @r-Dn!

Case 3: Simply supported at X=0 and free at X=1
The differential transform of Eqgs (4.4) at X=1 leads to

(~g )W, +(6 =g W3 +20~q Ws + oo =0,

(=@, W, +3Q2 =g, W3+ 512 =g, Ws + oo, =0,

where q; =U(m2n2k2), q, =(2—U)(m2n2k2)



594

Y. Kumar
and the characteristic equation is given as follows
i((2*r+1)(2*r)—q1)(R12R22r—R22R12r) i((2*r+1)(2*r)—q1)(R12r—Rzzr)
= 2r+1)! - QCr+1)!
=0 ( o =0 L |F0 @14
i((z*rxz*r—l)—qg)(& R —RR") i((Z*r)(z*r—l)—qg)(Rl R,
0 (2r)! — (2r)!
The displacement function for SC plate
p— N p—
W(X)=D (X -X,)'W,,
r=0
W(X) =D X W, + ) X2 W,
r=0 r=0
N 2 N 2p 2r 2p2r 2r 2r
_ _ - _ R’ —R _
7= X7, = A 3 x (R Ry™ —Ry"R, )WI PGy 2 ,
oy 2Q 4 QCr+1)! QCr+1)!
(4.15)
N r 2p 2r 2 N 2r 2r
:ﬁz){zru (R’R,”" —R,’R, )W]JF(SK_ZX%H (R —-R, )I/I_/3,
2Q 4 QCr+1)! 2Q 47 QCr+1)!
N r 2r 2 (N 2r 2r
2y RERT BRI (3 (S g R RN B CrD) :
2Q 4% QCr+1)! 2Q\ = 2r+1)! z (R —R,")
= Q@r+)!
The displacement function for SS plate
2 N 2p2r _p2p2ry 2 N 2r _p2ry
V—V(X)J_ZXM (R°Ry™" —Ry"R )m+6lzxzr+f R R g
204 r+1)! 204 @r+1)!
(4.16)

2 N (RR -RR”) 2(N 2 oo 0
ZK_ZXZM 172 2 W,—6}L— Zsz R -R7) | =0 (2r-n! ]
204 2r+1)! 20| & Qr+1)! v (R -R)

6 N 7
S (2r-1)!

Displacement function for SF plate
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p— 2 N R12R22r _R22R12r _ 2 N 12/‘ _R22r _
W(X):}\'_ZX2V+I( ) ,+6LZX2’+]( )Ws,

2Q= 2r+1)! 2Q7= Cr+1)!
2p 2r 2p 2r 2r 2r
:lzi 2r+1( TR RR )—_ﬁ ﬁ:eru(] R ) * temp * W,
2Q7= 2r+1)! 2Q| = Cr+1)!
N (@*r)(2%r=1)-q,)(R7R” ~RR)
2r)!
temp =12 @) 4.17)

Y (@*(2*r=1)=q, )R~ R

r=0

(2r)!

To obtain the values of the frequency parameter (), the characteristic Eqs (4.12)-(4.14) have been
solved with the help of a computer program developed in C++ using the bisection method for different
values of the aspect ratio A (=a/b) and foundation modulus parameter K. This program was run for different
values of N until we get the first three values of the frequency parameter €2 correct to four decimal places
and the value of N has been taken as 21. In this study, m =17 and v=0.3 have been fixed. The values of the
frequency parameter €2 for different combinations of the aspect ratio and foundation modulus parameter are
presented in Tab.2. It is concluded that the value of the frequency parameter decreases in the order
SC>SS>SF. Further, it increases with the increasing values of the foundation modulus parameter K and
aspect ratio a/b. A comparison of results for plates without foundation is given in Tab.3 which shows fast
convergence of the method. Moreover, the results are better than those obtained by Bhat ef al. (1990) and
Bambill et al. (2000). Further, mode shapes may be drawn using Eqs (4.15)-(4.17).

Table 2
SC SS | SF
A=alb
K |Mode| 0.5 10 2.0 0.5 1.0 2.0 10 2.0
1 20.0097 | 25.6739 | 52.6330 ] 15.8809 | 22.1277 | 50.3510 | 15.3795 | 42.3930
100 | I 53.0490 | 59.4928 | 86.7130 | 43.1213 | 50.3510 | 79.5876 | 29.5028 | 59.9061
L | 106.9470 | 113.6690 | 141.2000 | 91.8399 | 99.2014 | 128.6940 | 62.6637 | 95.0114
1 22.3694 | 27.5526 | 53.5746 | 18.7671 | 24.2824 | 51.3344 | 18.3447 | 43.5564
200 | II 53.9833 | 60.3274| 87.2877 | 44.2657 | 51.3345 | 80.2134 | 31.1515 | 60.7349
UL | 107.4140 | 114.1080 | 141.5540 | 92.3827 | 99.7041 | 129.0820 | 63.4566 | 95.5362
1 24.5028 | 29.3112| 54.4998 | 21.2650 | 26.2610 | 52.2994 | 20.8933 | 44.6897
300 | I 54.9017 | 61.1506 | 87.8586 | 45.3812 | 52.2994 | 80.8343 | 32.7172 | 61.5527
I | 707.8780 | 114.5450 | 141.9070 | 92.9223 | 100.2040 | 129.4690 | 64.2397 | 96.0581
1 264649 | 30.9701 | 55.4096 | 23.4990 | 28.1005 | 53.2469 | 23.1631 | 45.7948
400 | IT 55.8050 | 61.9628 | 88.4259 | 46.4699 | 53.2468 | 81.4505 | 34.2113 | 62.3597
M1 | 108.3410 | 114.9810 | 142.2580 | 93.4589 | 100.7020 | 129.8540 | 65.0133 | 96.5773
1 28.2912 | 32.5446 | 56.3048 | 25.5382 | 29.8268 | 54.1778 | 25.2295 | 46.8739
500 | II 56.6938 | 62.7646 | 88.9896 | 47.5337 | 54.1777 | 82.0621 | 35.6429 | 63.1564
I [ 7088010 | 115.4150 | 142.6100 | 93.9923 | 101.1970 | 130.2390 | 65.7779 | 97.0936
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Table3 (a/b=1,K =0)
Boundary Reference Mode
conditions I II 11
SC Bhat et al. (1990) 23.6463 58.6465 113.5220
Present 23.6463 58.6464 113.2280
SS Bhat et al. (1990) 19.7392 49.3481 99.3042
Present 19.7392 49.3480 98.6960
SF Bambill et al. (2000) 11.7195 - -
Present 11.6845 27.7563 61.8606

5. Conclusions

The applicability of the differential transform method to analyze free transverse vibrations of
isotropic rectangular plates of uniform thickness resting on a Winkler foundation is shown. The two opposite
edges of the plate are assumed to be simply supported. Three combinations of boundary conditions, namely,
simply supported, clamped and free have been taken on other two edges, keeping one of them simply
supported. Characteristic equations have been obtained in the form of infinite series and have been solved
numerically using a computer program developed in C++ to obtain natural frequencies. The results obtained
show reliability and fast convergence of the method for rectangular plates.

Nomenclature

a—- length of the plate

b— breadth of the plate
C— clamped edge
D—- flexural rigidity

E— Young’s modulus

F - free edge

h— thickness
K - foundation parameter

k; - foundation modulus

m— an integer

S — simply supported edge
W — displacement

X,Y - non-dimensional variables
x,y,z— Cartesian coordinates

A — aspect ratio

v— Poisson ratio

Q- frequency parameter
o—- radial frequency
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