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A differential transform method (DTM) is used to analyze free transverse vibrations of isotropic rectangular 
plates resting on a Winkler foundation. Two opposite edges of the plates are assumed to be simply supported. 
This semi-numerical-analytical technique converts the governing differential equation and boundary conditions 
into algebraic equations. Characteristic equations are obtained for three combinations of clamped, simply 
supported and free edge conditions on the other two edges, keeping one of them to be simply supported. 
Numerical results show the robustness and fast convergence of the method. Correctness of the results is shown by 
comparing with those obtained using other methods. 
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1. Introduction 
 
 Rectangular plates are used as structural elements in various technological situations in different 
engineering fields, e.g., aeronautics, civil, marine, mechanical and optical engineering. Overall performance 
of a structure is highly influenced by the dynamic behavior of the plates. Vibrations of these plates have been 
analyzed using different techniques, namely, the finite element method (Venkateswara, 1974), the 
Superposition-Galerkin method (Gorman, 2000), the meshless method (Chen et al., 2004), the differential 
quadrature method (Wang et al., 2006), the singular convolution method (Omer et al., 2010) and the 
Rayleigh-Ritz method (Kumar and Lal, 2011), etc. The differential transform method was introduced by 
Zhou (1986). This method was used by Arikoglu and Ozcol (2005) to find analytical solutions of differential 
or integro-differential equations. It has been successfully applied in the analysis of various vibration 
problems (Malik and Allali, 2000; Yalcin et al., 2000; Attarnejad et al., 2010 and Kacar et al., 2011). Using 
this method the differential equation governing the free transverse vibrations of the plate and boundary 
conditions are transformed into algebraic equations which provide the characteristic equations. These 
characteristic equations are solved numerically to obtain first three natural frequencies. The results indicate 
that differential transform method is a reliable and fast converging method for the vibration analysis of 
rectangular plates. 
 
2. Formulation of the problem 
 
 Consider an isotropic rectangular plate of uniform thickness h with the domain ,0 x a 0 y b     in 

the xy  plane, where a  and b are the length and the breadth of the plate, respectively. The x and y
axes are taken along the edges of the plate and the axis of z  is perpendicular to the xy  plane. The 
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middle surface is z 0  and the origin is at one of the corners of the plate. The plate is resting on a Winkler 
foundation having the foundation modulus fk . 

 The governing differential equation of motion of an isotropic rectangular plate resting on the 
Winkler foundation is given as follows 
 

  , ,
4 4 4

2 4 2
4 2 2 4

W W W
2 KW W 0 X 1 0 Y 1

X X Y Y

  
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            (2.1) 

 

where / , / ,X x a Y y b   /a b  , W  is the transverse displacement at ( , )X Y ,  4
fK k a D  is the 

foundation modulus parameter and 
 2 4 2

2
3

12 1 a

Eh

   
   is the frequency parameter. 

 Assuming the two opposite edges Y 0  and Y 1  to be simply supported, the deflection function 
can be expressed as follows 
 
  ( )sin( )W W X m Y             (2.2) 
 
where m  is an integer. 
 Substitution of Eq.(2.2) into Eq.(2.1) leads to 
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3. Boundary conditions 
 
 Three boundary conditions, namely, SC, SS and SF have been considered where the first letter 
represents the boundary condition at the edge X 0  and second one at the edge X 1 . Here C stands for a 
clamped edge, S for a simply supported and F for a free edge. The edges Y 0  and Y 1 are assumed to be 
simply supported. The conditions that should be satisfied at the edges X 0  and X 1  are 
 

  ,
dW

W 0
dX

        for clamped edge           (3.1) 

 

    ,
2

2 2 2
2

d W
W m W 0

dX
            for simply supported edge     (3.2) 

 

     , ( ) .
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4. The solution 
 
 The differential transform method (DTM) is based on the Taylor series expansion. The Taylor series 
expansion of a function ( )f x  may be written as 
 

   ( )
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0 r
r 0

f x x x F




   
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where 
!

0
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r r
x x

1 d f
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r dx 

 
   

 
 is called the thr  order differential transform of ( )f x  about a point .0x x  

 Differential transforms of some of the fundamental functions are given in Tab.1. 
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 Taking the differential transform of Eq.(2.3) at 0X 0  using Tab.1, we get 
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! !
2 2 2 2 4 4 4

r 4 r 2 r
r 4 r 2

W 2m W m K W 0
r r 
 

                     (4.1)  

 

 The boundary conditions (3.1)-(3.3) may be transformed as follows 
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and 
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 The general solution (Malik and Allali, 2000) of Eq.(2.3) can be written as 
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where   , .2 2 2 2 2 2 2 2 2 2
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 Rewriting Eq.(4.5) as 
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Case 1: Simply supported at X=0 and clamped at X=1 
 Let 0X 0 . At X=0, Eq.(4.3) becomes 
 

  

................... ,

................... ,
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           (4.8) 

 

i.e., .0 2W W 0   Using these values in Eq.(4.5), we get .1 2d d 0   It implies .2rW 0  
 For r=0 and 1, Eq.(4.5) gives 
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 Now, Eq.(4.7) becomes   
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 At X=1, Eqs (4.2) become 
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 The characteristic equation is obtained from the non-trivial condition 
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Case 2: Simply supported at X=0 and simply supported at X=1 
 After taking the differential transform, Eqs (4.3) at X=1 can be written as follows 
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 The characteristic equation becomes 
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Case 3: Simply supported at X=0 and free at X=1 
 The differential transform of Eqs (4.4) at X=1 leads to 
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and the characteristic equation is given as follows 
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 The displacement function for SC plate 
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  The displacement function for SS plate 
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 Displacement function for SF plate 
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 To obtain the values of the frequency parameter  , the characteristic Eqs (4.12)-(4.14) have been 
solved with the help of a computer program developed in C++ using the bisection method for different 
values of the aspect ratio  (=a/b) and foundation modulus parameter K. This program was run for different 
values of N until we get the first three values of the frequency parameter   correct to four decimal places 
and the value of N has been taken as 21. In this study, m 1  and .0 3   have been fixed. The values of the 
frequency parameter   for different combinations of the aspect ratio and foundation modulus parameter are 
presented in Tab.2. It is concluded that the value of the frequency parameter decreases in the order 
SC>SS>SF. Further, it increases with the increasing values of the foundation modulus parameter K and 
aspect ratio a/b. A comparison of results for plates without foundation is given in Tab.3 which shows fast 
convergence of the method. Moreover, the results are better than those obtained by Bhat et al. (1990) and 
Bambill et al. (2000). Further, mode shapes may be drawn using Eqs (4.15)-(4.17). 
 

Table 2
  SC SS SF 
  /a b 
K Mode  0.5 1.0 2.0 0.5 1.0 2.0 1.0 2.0

100 
I 20.0097 25.6739 52.6330 15.8809 22.1277 50.3510 15.3795 42.3930
II 53.0490 59.4928 86.7130 43.1213 50.3510 79.5876 29.5028 59.9061
III 106.9470 113.6690 141.2000 91.8399 99.2014 128.6940 62.6637 95.0114

         

200 
I 22.3694 27.5526 53.5746 18.7671 24.2824 51.3344 18.3447 43.5564
II 53.9833 60.3274 87.2877 44.2657 51.3345 80.2134 31.1515 60.7349
III 107.4140 114.1080 141.5540 92.3827 99.7041 129.0820 63.4566 95.5362

         

300 
I 24.5028 29.3112 54.4998 21.2650 26.2610 52.2994 20.8933 44.6897
II 54.9017 61.1506 87.8586 45.3812 52.2994 80.8343 32.7172 61.5527
III 107.8780 114.5450 141.9070 92.9223 100.2040 129.4690 64.2397 96.0581

      

400 
I 26.4649 30.9701 55.4096 23.4990 28.1005 53.2469 23.1631 45.7948
II 55.8050 61.9628 88.4259 46.4699 53.2468 81.4505 34.2113 62.3597
III 108.3410 114.9810 142.2580 93.4589 100.7020 129.8540 65.0133 96.5773

      

500 
I 28.2912 32.5446 56.3048 25.5382 29.8268 54.1778 25.2295 46.8739
II 56.6938 62.7646 88.9896 47.5337 54.1777 82.0621 35.6429 63.1564
III 108.8010 115.4150 142.6100 93.9923 101.1970 130.2390 65.7779 97.0936
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5. Conclusions 
 

 The applicability of the differential transform method to analyze free transverse vibrations of 
isotropic rectangular plates of uniform thickness resting on a Winkler foundation is shown. The two opposite 
edges of the plate are assumed to be simply supported. Three combinations of boundary conditions, namely, 
simply supported, clamped and free have been taken on other two edges, keeping one of them simply 
supported. Characteristic equations have been obtained in the form of infinite series and have been solved 
numerically using a computer program developed in C++ to obtain natural frequencies. The results obtained 
show reliability and fast convergence of the method for rectangular plates.  
 
Nomenclature  
 
 a   length of the plate 
 b   breadth of the plate 
 C   clamped edge 
 D   flexural rigidity 
 E   Young’s modulus 
 F   free edge 
 h   thickness 
 K   foundation parameter 
 fk   foundation modulus 

 m   an integer 
 S   simply supported edge 
 W   displacement 
 ,X Y   non-dimensional variables 
 , ,x y z   Cartesian coordinates 
    aspect ratio 
    Poisson ratio 
   frequency parameter 
   radial frequency 
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