Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Analysis of a network in terms of vulnerability is one of the most significant problems. Graph theory serves as a valuable tool for solving complex network problems, and there exist numerous graph-theoretic parameters to analyze the system's stability. Among these parameters, the closeness parameter stands out as one of the most commonly used vulnerability metrics. Its definition has evolved to enhance the ease of formulation and applicability to disconnected structures. Furthermore, based on the closeness parameter, vertex residual closeness, which is a newer and more sensitive parameter compared to other existing parameters, has been introduced as a new graph vulnerability index by Dangalchev. In this study, the outcomes of the closeness and vertex residual closeness parameters in Harary Graphs have been examined. Harary Graphs are well-known constructs that are distinguished by having vertices that are -connected with the least possible number of edges.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
105--127
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
- Maritime Faculty Dokuz Eylul University Tinaztepe Campus, Buca, Izmir, Turkey
autor
- Department of Mathematics Ege University Bornova, Izmir, Turkey
Bibliografia
- [1] Freeman L. Centrality in social networks conceptual clarification. Social Networks, 1978. 1(3):215-239. doi:10.1016/0378-8733(78)90021-7.
- [2] Latora V, Marchiori M. Efficient behavior of small-world networks. Phys. Rev. Lett., 2001. 87(19):198701. doi:10.1103/PhysRevLett.87.198701.
- [3] Dangalchev C. Residual closeness in networks. Physica A Statistical Mechanics and Its Applications, 2006. 365:556-564. doi:10.1016/j.physa.2005.12.020
- [4] Aytac A, Odabas Z. Residual closeness of wheels and related networks. IJFCS, 2011. 22(5):1229-1240. doi:10.1142/S0129054111008660.
- [5] Aytac A, Odabas Z. Residual Closeness For Helm And Sunower Graphs. TWMS Journal of Applied and Engineering Mathematics, 2017. 7(2):209-220. ISSN:2146-1147.
- [6] Aytac A, Odabas Z. Network robustness and residual closeness. RAIRO Operation Research, 2018. 52(3):839-847. doi:10.1051/ro/2016071.
- [7] Aytac A, Odabas Z. Robustness of regular caterpillars. IJFCS, 2017. 28(7):835-841. doi:10.1142/S0129054117500277.
- [8] Berberler Z, Yigit E. Link Vulnerability in Networks. IJFCS, 2018. 29(3):447-456. doi:10.1142/s0129054118500144.
- [9] Aytac A, Turaci T. Closeness centrality in some splitting networks. Computer Science Journal of Moldova, 2018. 26(3):251-269, ID: 57760763.
- [10] Dangalchev C. Residual Closeness of Generalized Thorn Graphs. Fundamenta Informaticae, 2018. 162(1):1-15. doi:10.3233/FI-2018-1710.
- [11] Dangalchev C. Closeness of Splitting Graphs. C.R.Acad.Bulg. Sci., 2020. 73(4):461-466.
- [12] Dangalchev C. Residual closeness and Generalized closeness. IJFCS, 2011. 22(8):1939-947. doi:10.1142/S0129054111009136.
- [13] Odabas Z, Aytac A. Residual closeness in cycles and related networks. Fundamenta Informaticae, 2013. 124(3):297-307. doi:10.3233/FI-2013-835.
- [14] Turaci T, Aytac A. Combining the concepts of Residual and Domination in Graphs. Fundamenta Informaticae, 2019. 166(4):379-392. doi:10.3233/FI-2019-1806.
- [15] Turaci T, Aytac V. Residual closeness of splitting networks. Ars Combinatoria, 2017. 130:17-27.
- [16] Turaci T, Okten M. Vulnerability of Mycielski graphs via residual closeness. Ars Combinatoria, 2018. 118:419-427.
- [17] Chartrand G, Lesniak L, Zhang P. Graphs and Digraphs: Sixth Edition. Chapman and Hall/CRC, 2015. ISBN-10:1498735762, 13:978-1498735766.
- [18] Harary F. Graph Theory. MA: Addison-Wesley, 1994.
- [19] Harary F. The maximum connectivity of a graph. In National Academy of Sciences of the United States of America, 1962. 48:1142-1146. https://www.jstor.org/stable/71730.
- [20] West D. Introduction to Graph Theory, 2nd ed. Englewood Cliffs, NJ:Prentice-Hall, 2000.
- [21] Tanna S. Broadcasting in Harary Graphs, A Thesis for the Degree of Master of Computer Science Concordia University Montreal, Quebec, Canada, 2015.
- [22] Dairyko M, Young M. On exponential domination of the consecutive circulant graph. IJFCS, 2017. doi:10.48550/arXiv.1712.05429.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5597aef9-ec88-4b37-9632-69f215c2ce46
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.