Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Fast and effective extraction of equivalent shunt resistance for each subcell of GaInP/GaInAs/Ge triple-junction concentrator solar cells is presented. The two-diode model of single junction was introduced to establish the equivalent circuit of triple-junction solar cells. The current-voltage characteristic of the triple-junction solar cells was measured under AM1.5D spectrum, C = 576 and T = 303 K. Equivalent shunt resistance of each subcell was extracted from its estimated current-voltage curve. The estimated current-voltage curve of the triple-junction solar cells shows a good agreement with the experimental data in 0.31% deviation. The degradation in the equivalent shunt resistance for Ge subcell was intentionally introduced to indicate the mechanism of current-matching operation for different subcells, with the maximum output power of the triple-junction solar cells deteriorating from 3.5 to 3.17 W. The results can offer performance analysis and optimum design of photovoltaic applications.
Czasopismo
Rocznik
Tom
Strony
227--235
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
autor
- Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy, Hubei University of Technology, Wuhan 430068, P.R. China
- School of Science, Hubei University of Technology, Wuhan 430068, P.R. China
autor
- Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy, Hubei University of Technology, Wuhan 430068, P.R. China
- School of Science, Hubei University of Technology, Wuhan 430068, P.R. China
autor
- Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy, Hubei University of Technology, Wuhan 430068, P.R. China
- School of Science, Hubei University of Technology, Wuhan 430068, P.R. China
autor
- Institute of Advanced Technology, University of Science and Technology of China, Hefei 230022, P.R. China
autor
- Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy, Hubei University of Technology, Wuhan 430068, P.R. China
- School of Science, Hubei University of Technology, Wuhan 430068, P.R. China
autor
- Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy, Hubei University of Technology, Wuhan 430068, P.R. China
- School of Science, Hubei University of Technology, Wuhan 430068, P.R. China
autor
- Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy, Hubei University of Technology, Wuhan 430068, P.R. China
- School of Science, Hubei University of Technology, Wuhan 430068, P.R. China
Bibliografia
- [1] KOZŁOWSKA A., NAKIELSKA M., SARNECKI J., LIPIŃSKA L., JEREMIASZ O., PODNIESIŃSKI D., MALĄG A., Spectroscopic investigations of rare-earth materials for luminescent solar concentrators, Optica Applicata 41(2), 2011, pp. 359–365.
- [2] GREEN M.A., EMERY K., HISHIKAWA Y., WARTA W., DUNLOP E.D., Solar cell efficiency tables (version 43), Progress in Photovoltaics: Research and Applications 22(1), 2014, pp. 1–9.
- [3] ASAF BEN OR, APPELBAUM J., Estimation of multi-junction solar cell parameters, Progress in Photovoltaics: Research and Applications 21(4), 2013, pp. 713–723.
- [4] ZHANG LUCHENG, SHEN HUI, Novel approach for characterizing the specific shunt resistance caused by the penetration of the front contact through the p–n junction in solar cell, Journal of Semiconductors 30(7), 2009, article 074007.
- [5] PRAŻMOWSKA J., PASZKIEWICZ R., KORBUTOWICZ R., WOŚKO M., TŁACZAŁA M., Solar cells conversion efficiency enhancement techniques, Optica Applicata 37(1–2), 2007, pp. 93–98.
- [6] SOGABE T., OGURA A., OKADA Y., Analysis of bias voltage dependent spectral response in Ga0.51 In0.49P/Ga0.99 In0.01As/Ge triple junction solar cell, Journal of Applied Physics 115(7), 2014, article 074503.
- [7] PARASKEVA V., HADJIPANAYI M., NORTON M., PRAVETTONI M., GEORGHIOU G.E., Voltage and light bias dependent quantum efficiency measurements of GaInP/GaInAs/Ge triple junction devices, Solar Energy Materials and Solar Cells 116, 2013, pp. 55–60.
- [8] GIAFFREDA D., MAGNONE P., MENEGHINI M., BARBATO M., MENEGHESSO G., ZANONI E., SANGIORGI E., FIEGNA C., Local shunting in multicrystalline silicon solar cells: distributed electrical simulations and experiments, IEEE Journal of Photovoltaics 4(1), 2014, pp. 40–47.
- [9] NAOREM SANTAKRUS SINGH, AVINASHI KAPOOR, Determining multi-junction solar cell parameters using Lambert-W function, Paripex – Indian Journal of Research 3(5), 2014, pp. 203–206.
- [10] D’ALESSANDRO V., GUERRIERO P., DALIENTO S., GARGIULO M., A straightforward method to extract the shunt resistance of photovoltaic cells from current-voltage characteristics of mounted arrays, Solid-State Electronics 63(1), 2011, pp. 130–136.
- [11] SOGABE T., OGURA A., OHBA M., OKADA Y., Self-consistent electrical parameter extraction from bias dependent spectral response measurements of III-V multi-junction solar cells, Progress in Photovoltaics: Research and Applications 23(1), 2015, pp. 37–48.
- [12] SWEE HOE LIM, JING-JING LI, STEENBERGEN E.H., YONG-HANG ZHANG, Luminescence coupling effects on multijunction solar cell external quantum efficiency measurement, Progress in Photovoltaics: Research and Applications 21(3), 2013, pp. 344–350.
- [13] KINSEY G.S., EDMONDSON K.M., Spectral response and energy output of concentrator multijunction solar cells, Progress in Photovoltaics: Research and Applications 17(5), 2009, pp. 279–288.
- [14] VURGAFTMAN I., MEYER J.R., RAM-MOHAN L.R., Band parameters for III-V compound semiconductors and their alloys, Journal of Applied Physics 89(11), 2001, pp. 5815–5875.
- [15] http://www.azurspace.com/images/products/DB_3988-00-00_3C42_AzurDesign_EFA_55x55_2014-03-27.pdf
- [16] SEGEV G., MITTELMAN G., KRIBUS A., Equivalent circuit models for triple-junction concentrator solar cells, Solar Energy Materials and Solar Cells 98, 2012, pp. 57–65.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-55974cf1-e3d2-4336-9a6e-4a836501f3f4