PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Can we distinguish between tree-ring eccentricity developed as a result of landsliding and prevailing winds? consequences for dendrochronological dating

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of our study was to compare patterns of tree-ring eccentricity developed in Norway spruce trees as a result of landsliding with the one caused by the prevailing wind (in 2 study sites), and with the normal growth of trees (in 2 reference sites). We sampled 20 trees per study site and 10 per reference site. Two cores were taken from each tree (120 cores in total) from the upslope and downslope, windward and leeward sides of stems. Ring widths measured on opposite sides of stems were compared using the method of percent eccentricity index. Graphs of the index obtained for individual trees were analysed. Statistical indicators were calculated for a percent eccentricity index. Disturbance events were dated and the response index was calculated. The results show that the patterns of eccentricity developed as a result of the prevailing winds and due to landsliding differ from one another and from the reference sites. The results suggest that the impact of the prevailing wind on tree growth is more severe than the impact of landsliding. The difference may result from the slow-moving character of the landslide under study. The results, however, indicate that wind impact should be taken into account in dendrogeomorphic research and that the impact of mass movements should be considered in dendroecological studies on wind.
Wydawca
Czasopismo
Rocznik
Strony
223--234
Opis fizyczny
Bibliogr. 48 poz., rys.
Twórcy
autor
  • University of Silesia in Katowice, Faculty of Earth Sciences, ul. Będzińska 60, 41-200 Sosnowiec, Poland
autor
  • University of Silesia in Katowice, Faculty of Earth Sciences, ul. Będzińska 60, 41-200 Sosnowiec, Poland
autor
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • 1. Bannan MW and Bindra M, 2011. The influence of wind on ring width and cell length in conifer stems. Canadian Journal of Botany 48(2): 255–259, DOI 10.1139/b70-037.
  • 2. Braam RR, Weiss EEJ and Burrough PA, 1987. Dendrogeomorphological analysis of mass movement a technical note on the research method. Catena Supplement 9: 585–589, DOI 10.1016/0341-8162(87)90008-7.
  • 3. Cockburn JMH, Vetta M and Garver JI, 2016. Tree-ring evidence linking late twentieth century changes in precipitation to slope instability, central New York state, USA. Physical Geography 37(2): 153–168, DOI 10.1080/02723646.2016.1157741.
  • 4. Corominas J and Moya J, 2008. A review of assessing landslide frequency for hazard zoning purposes. Engineering Geology 102(3–4): 193–213, DOI 10.1016/j.enggeo.2008.03.018.
  • 5. Corominas J and Moya J, 2010. Contribution of dendrochronology to the determination of magnitude–frequency relationships for landslides. Geomorphology 124(3–4): 137–149, DOI 10.1016/j.geomorph.2010.09.001.
  • 6. Cropper JP, 1979. Tree-ring skeleton plotting by computer. Tree-Ring Bulletin 39: 47–60.
  • 7. Duncker P and Spiecker H, 2008. Cross-sectional compression wood distribution and its relation to eccentric radial growth in Picea abies [L.] Karst. Dendrochronologia 26(3): 195–202, DOI 10.1016/j.dendro.2008.06.004.
  • 8. Ennos AR, 1997. Wind as an ecological factor. Trends in Ecology & Evolution12(3): 108–111, DOI 10.1016/S0169-5347(96)10066-5.
  • 9. Franco-Ramos O , S toffel M and V ázquez-Selem L, 2017. Tree-ring based reconstruction of rockfalls at Cofre de Perote volcano, Mexico. Geomorphology 290: 142–152, DOI 10.1016/j.geomorph.2017.04.003.
  • 10. Fritts HC and Swetman TW, 1986. Dendroecology: A tool for evaluating variations on past and present forest environments. Advances in Ecological Research 19: 111–188, DOI 10.1016/S0065-2504(08)60158-0.
  • 11. Gardiner B, Berry P and Moulia B, 2016. Review: Wind impacts on plant growth, mechanics and damage. Plant Science 245: 94–118, DOI 10.1016/j.plantsci.2016.01.006.
  • 12. Kojs P, Malik I, Wistuba M, Stopka R and Trąbka K, 2012. Mechaniz-my wzrostu ekscentrycznego i formowania się drewna reakcyjnego w kontekście badań dendrogeomorfologicznych - wprowadzenie do nowej hipotezy (Mechanisms of eccentric growth and reaction wood formation in the light of dendrogeomorphological investigations - introduction to the novel hypothesis). Studia i Materiały Centrum Edukacji Przyrodniczo-Leśnej w Rogowie 30: 147–156 (in Polish).
  • 13. Lang A, Moya J, Corominas J, Schrott L and Dikau R, 1999. Classic and new dating methods for assessing the temporal occurrence of mass movements. Geomorphology 30: 33–52, DOI 10.1016/S0169-555X(99)00043-4.
  • 14. Lopez Saez J, Corona C, Stoffel M, Schoeneich P and Berger F, 2012. Probability maps of landslide reactivation derived from tree-ring records: Pra Bellon landslide, southern French Alps. Geomorphology 138(1): 189–202, DOI 10.1016/j.geomorph.2011.08.034.
  • 15. Łuszczyńska K and Wistuba M, 2015. Czynniki uaktywniające i zróżnicowanie czasowe przemieszczeń koluwiów w różnych częściach stoku osuwiskowego – analiza dendrochronologiczna na przykładzie osuwiska Skalka (Moravskoslezske beskydy) (Triggering factors and temporal variability of colluvia transfer in diverse parts of a landslide slope – Dendrochronological analysis at the example of the Skalka landslide (Moravskoslezske beskydy)). Landform Analysis 28: 103–113 (in Polish), DOI 10.12657/landfana.028.008.
  • 16. Łuszczyńska K, Wistuba M and Malik I, 2018. Dendrochronological dating as a basis for a landslide hazard map - an example from the Western Carpathians, Poland. Geochronometria 45: 173–184, DOI 10.1515/geochr-2015-0093.
  • 17. Malik I, Danek M, Marchwińska-Wyrwał E, Danek T, Wistuba M and Krąpiec M, 2012. Scots Pine (Pinus sylvestris) growth suppressions and adverse human health effect due to air pollution in Upper Silesian Industrial District (USID), southern Poland. Water Air and Soil Pollution 223(6): 3345–3364, DOI 10.1007/s11270-012-1114-8.
  • 18. Malik I and Wistuba M, 2012. Dendrochronological methods for reconstructing mass movements – An example of landslide activity analysis using tree-ring eccentricity. Geochronometria 39(3): 180–196, DOI 10.2478/s13386-012-0005-5.
  • 19. Malik I, Wistuba M, Migoń P and Fajer M, 2016. Activity of slow-moving landslides recorded in eccentric tree rings of Norway spruce trees (Picea abies Karst.) – An example from the Kamienne Mts. (Sudetes Mts., Central Europe).Geochronometria 43: 24–37, DOI 10.1515/geochr-2015-0028.
  • 20. Malik I, Wistuba M, Tie Y, Owczarek P, Woskowicz-Ślęzak B and Łuszczyńska K, 2017. Mass movements of differing magnitude and frequency in a developing high-mountain area of the Moxi basin, Hengduan Mts, China – A hazard assessment. Applied Geography 87: 54–65, DOI 10.1016/j.apgeog.2017.08.003.
  • 21. Martin J-P and Germain D, 2015. Can we discriminate snow avalanches from other disturbances using the spatial patterns of tree-ring response? Case studies from the Presidential Range, White Mountains, New Hampshire, United States. Dendrochronologia 37: 17–32, DOI 10.1016/j.dendro.2015.12.004.
  • 22. Massey CI, Petley DN and McSaveney MJ, 2013. Patterns of movement in reactivated landslides. Engineering Geology 159: 1–19, DOI 10.1016/j.enggeo.2013.03.011.
  • 23. Migoń P, Kacprzak A, Malik I, Kasprzak M, Owczarek P, Wistuba M and Pánek T, 2014. Geomorphological, pedological and dendrochronological signatures of a relict landslide terrain, Mt Garbatka (Kamienne Mts), SW Poland. Geomorphology 219: 213–231, DOI 10.1016/j.geomorph.2014.05.005.
  • 24. Migoń P , P ánek T , M alik I , H rádecký J , O wczarek P and Šilhán K , 2010. Complex landslide terrain in the Kamienne Mountains, Middle Sudetes, SW Poland. Geomorphology 124(3–4): 200–214, DOI 10.1016/j.geomorph.2010.09.024.
  • 25. Noferini L, Pieraccini M, Mecatti D, Macaluso G, Atzeni C, Mantovani M, Marcato G, Pasuto A, Silvano S and Tagliavini F, 2007. Using GB-SAR technique to monitor slow moving landslide. Engineering Geology 95(3–4): 88–98, DOI 10.1016/j.enggeo.2007.09.002.
  • 26. Nöjd P, Korpela M, Hari P, Rannik U, Sulkava M, Hollmén J and Mäkinen H, 2017. Effects of precipitation and temperature on the growth variation of Scots pine – A case study at two extreme sites in Finland. Dendrochronologia46: 35–45, DOI 10.1016/j.dendro.2017.09.003.
  • 27. Paolini L, Villalba R and Grau HR, 2005. Precipitation variability and landslide occurrence in a subtropical mountain ecosystem of NW Argentina. Dendrochronologia 22(3): 175–180, DOI 10.1016/j.dendro.2005.06.001.
  • 28. Papciak T, Malik I, Krzemień K, Wistuba M, Gorczyca E, Wrońska-Wałach D and Sobucki M, 2015. Precipitation as a factor triggering landslide activity in the Kamień massif (Beskid Niski Mts, Western Carpathians). Bulletin of Geography. Physical Geography Series8: 5–17, DOI 10.2478/7013.
  • 29. Robertson A, 2011. Centroid of wood density, bole eccentricity, and tree-ring width in relation to vector winds in wave forests. Canadian Journal of Forest Research 21(1): 73–82, DOI 10.1139/x91-011.
  • 30. Robertson A, 1986. Estimating mean windflow in hilly terrain from tamarack (Larix lancina (Du Roi) K. Koch) deformation.International Journal of Biometeorology 30(4): 333–349, DOI 10.1007/BF02189371.
  • 31. Ruelle J, 2014. Morphology, anatomy and ultrastructure of reaction wood. in: Gardiner B, Barnett J, Saranpää P and Gril J, eds., The biology of reaction wood Springer, Berlin, Heidelberg: 13–35, DOI 10.1007/978-3-642-10814-3.
  • 32. Schweingruber FH, 1996. Tree rings and environment. DendroecologyBerne, Stuttgart, Vienna, Paul Haupt Publishers: 609 pp.
  • 33. Shroder Jr JF, 1978. Dendrogeomorphological analysis of mass movement on Table Cliffs Plateau, Utah. Quaternary Research9: 168–185, DOI 10.1016/0033-5894(78)90065-0.
  • 34. Stefanini MC, 2004. Spatio-temporal analysis of a complex landslide in the Northern Apennines (Italy) by means of dendrochronology. Geomorphology 63(3–4): 191–202, DOI 10.1016/j.geomorph.2004.04.003.
  • 35. Stoffel M, 2010. Magnitude–frequency relationships of debris flows — A case study based on field surveys and tree-ring records. Geomorphology 116(1–2): 67–76, DOI 10.1016/j.geomorph.2009.10.009.
  • 36. Šilhán K, 2017. Dendrogeomorphic chronologies of landslides: Dating of true slide movements? Earth Surface Processes and Landforms 42(13): 2109–2118, DOI 10.1002/esp.4153.
  • 37. Šilhán K, Pánek T and Hradecký J, 2012. Tree-ring analysis in the reconstruction of slope instabilities associated with earthquakes and precipitation (the Crimean Mountains, Ukraine). Geomorphology 173–174: 174–184, DOI 10.1016/j.geomorph.2012.06.010.
  • 38. Šilhán K and Stoffel M, 2015. Impacts of age-dependent tree sensitivity and dating approaches on dendrogeomorphic time series of landslides. Geomorphology 236: 34–43, DOI 10.1016/j.geomorph.2015.02.003.
  • 39. Telewski FW, 2012. Is windswept tree growth negative thigmotropism? Plant Science184: 20–28, DOI 10.1016/j.plantsci.2011.12.001.
  • 40. Timell TE, 1986. Compression wood in gymnosperms New York, Springer: 625 pp.
  • 41. Tomczak A, Jelonek T and Pazdrowski W, 2012. Ekscentryczność pni sosny zwyczajnej (Pinus sylvestris L.) z drzewostanów silnie eksponowanych na wiatr (Eccentricity of stems among Scots pine (Pinus sylvestris L.) from tree stands strongly exposed to wind). Prace Komisji Nauk Rolniczych i Komisji Nauk Leśnych 103: 41–46 (in Polish).
  • 42. Tumajer J and Treml V, 2015. Reconstruction ability of dendrochronology in dating avalanche events in the Giant Mountains, Czech Republic. Dendrochronologia 34: 1–9, DOI 10.1016/j.dendro.2015.02.002.
  • 43. Wang X, Stenström E, Boberg J, Ols C and Drobyshev I, 2017. Outbreaks of Gremmeniella abietina cause considerable decline in stem growth of surviving Scots pine trees. Dendrochronologia 44: 39–47, DOI 10.1016/j.dendro.2017.03.006.
  • 44. Wiedenhoeft AC, 2013. Structure and function of wood. In: Rowell RM, ed., Handbook of wood chemistry and wood composites CRC Press Taylor and Francis Group, Boca Raton: 9–32.
  • 45. Wistuba M, 2014. Slope-channel coupling as a factor in the evolution of mountains. The Western Carpathians and SudetesCham Heidelberg New York Dordrecht London, Springer: 224 pp, DOI 10.1007/978-3-319-05819-1.
  • 46. Wistuba M, Malik I, Gärtner H, Kojs P and Owczarek P, 2013. Application of eccentric growth of trees as a tool for landslide analyses: The example of Picea abies Karst. in the Carpathian and Sudeten Mountains (Central Europe). Catena 111 41–55, DOI 10.1016/j.catena.2013.06.027.
  • 47. Wistuba M, Malik I, Wójcicki K and Michałowicz P, 2015. Coupling between landslides and eroding stream channels reconstructed from spruce tree rings (examples from the Carpathians and Sudetes – Central Europe). Earth Surface Processes and Landforms 40(3): 293–312, DOI 10.1002/esp.3632.
  • 48. Zielonka T and Malcher P, 2009. The dynamics of a mountain mixed forest under wind disturbances in the Tatra Mountains, central Europe – a dendroecological reconstruction. Canadian Journal of Forest Research 39(11): 2215–2223, DOI 10.1139/X09-130.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-55959059-329f-48c5-9758-302311f3d48b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.