PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Safety of radiological and nuclear quasi-experiment – case study

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Bezpieczeństwo quasi-eksperymentu radiologicznego i jądrowego – studium przypadku
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to present the results of the safety level measurement of radiological and nuclear (RN) quasi-experiment (q-E), which was carried out in 2016 in the Chernobyl Exclusion Zone, in Pripyat town, as part of the “End-user driven DEmo for cbrNe” project (EDEN, FP7/2012- 2016, under grant agreement no. 313077). The paper analyses the q-E executed in such a radiologically contaminated area of the town to verify a hypothesis that is formulated as follows: providing a safety plan and the correct execution of the q-E, including using appropriate personal protective equipment as well as following strict safety rules, guarantee an acceptable safety level for first responders taking a part in q-E conducted in Pripyat area as per relevant legal regulations. The experimental method with the quantitative measurements of effective gamma dose, using thermoluminescent dosimeters (TLD) and task related monitoring using electronic dosimeters (ED) was utilised. The individual effective gamma doses for each q-E participant, for two days of the exposure, have been measured. The total effective gamma doses for each participant have been calculated and compared with effective dose rates limits regulations. The obtained results proved that the assumed hypothesis was positively verified from the international and Polish legal standpoint, which defines gamma radiation thresholds for exposed personnel and ordinary persons.
PL
Celem pracy jest przedstawienie wyników pomiaru poziomu bezpieczeństwa radiologicznego i jądrowego (RN) quasi-eksperymentu (q-E), który został przeprowadzony w 2016 r. w Czarnobylskiej Strefie Wykluczenia, w mieście Prypeć w ramach projektu „End-user driven DEmo for cbrNe” (EDEN, FP7/2012–2016, na podstawie umowy o dofinansowanie nr 313077). W artykule przeanalizowano q-E przeprowadzone na takim skażonym radiologicznie obszarze miasta, weryfikując hipotezę, która została sformułowana w następujący sposób: zapewnienie planu bezpieczeństwa i właściwe postępowanie podczas q-E, w tym stosowanie odpowiednich środków ochrony osobistej oraz przestrzeganie ścisłych zasad bezpieczeństwa, gwarantują z prawnego punktu widzenia akceptowalny poziom bezpieczeństwa dla pierwszych respondentów biorących udział w q-E przeprowadzonym na obszarze Prypeci. Zastosowano metodę eksperymentalną z ilościowym pomiarem efektywnej dawki gamma, przy użyciu dozymetrów termoluminescencyjnych (TLD) oraz monitorowanie związane z wykonywanym zadaniem przy użyciu dozymetrów elektronicznych (ED). Zmierzono indywidualne, efektywne dawki gamma dla każdego uczestnika q-E, dla dwóch dni ekspozycji. Obliczono całkowite efektywne dawki gamma dla każdego uczestnika i porównano je z przepisami dotyczącymi limitów dawek efektywnych. Otrzymane wyniki wykazały, że przyjęta hipoteza została pozytywnie zweryfikowana z punktu widzenia międzynarodowego i polskiego prawa, które określa progi promieniowania gamma dla personelu narażonego i zwykłych ludzi.
Rocznik
Tom
Strony
107--117
Opis fizyczny
Bibliogr. 32 poz., tab.
Twórcy
  • The Main School of Fire Service, Institute of Internal Security, Warsaw, Poland
  • The Main School of Fire Service, Institute of Internal Security, Warsaw, Poland
Bibliografia
  • 1. Aifadopoulou, G., Chaniotakis E., Stamos, I, Mamarikas S., and Mitsakis, E., (2018). An intelligent decision support system for managing natural and man-made disasters. International Journal of Decision Support Systems, 3(1-2): 91–105. https://doi.org/ 10.1504/IJDSS.2018.094263.
  • 2. Burgio, E., Piscitelli, P., Migliore, L., (2018). Ionizing radiation and human health: reviewing models of exposure and mechanisms of cellular damage. An epigenetic perspective. International Journal of Environ Res Public Health, 15(9):1971. DOI: 10.3390/ijerph15091971.
  • 3. Cherry, S.R., Sorenson, J.A., Phelps, M.E. (2012, February 12). Physics in Nuclear Medicine, Elsevier, pp. 427–442. Retrieved from https://www.elsevier.com/books/ physics-in-nuclear-medicine/cherry/978-1-4160-5198-5.
  • 4. Coates, R., (1990). Experience on the application of the ALARP principle. Journal of Radiological Protection, vol. 10(1), pp. 39-42.
  • 5. Commonwealth Offshore Petroleum and Greenhouse Gas Storage (Safety) Regulations (2009). “ALARP Guidance Note”. NOPSEMA. Archived from the original (PDF) on 16 June 2016.
  • 6. Connor, D.T., Wood, K., Martin, P.G., Goren, S., Megson-Smith, D., Verbelen, Y., Chyzhevskyi, I., Kirieiev, S., Smith, N.T., Richardson, T., Scott, T.B., Radiological Mapping of Post-Disaster Nuclear Environments Using Fixed-Wing Unmanned Aerial Systems: A Study from Chornobyl. Frontiers in Robotics and AI, 6 (2020). https://doi. org/10.3389/frobt.2019.00149.
  • 7. Cook, T.D. and Campbell, D.T., (1979). Quasi-Experimentation: Design and Analysis Issues for Field Settings. Chicago: Rand McNally College Publishing Company.
  • 8. Craig, S.B. and Hannum, K., (2006). Experimental and quasi-experimental evaluation. In The Handbook of Leadership Development Evaluation edited by K. Hannum, J.W. Martineau, C. Reinelt, pp. 19-47. Greensboro: Jossey-Bass and Centre for Creative Leadership.
  • 9. DRIVER+. Trial Guidance Methodology Handbook. February 2020. Accessed November 15, 2020. https://www.driver-project.eu/wp-content/uploads/2019/11/TGM-Handbook_ final-min.pdf.
  • 10. Gashchak, S.P., Bondarkov, M.D., Ivanov, Y.I., Maksymenko, A.M., Martynenko, V.I. and Arkhipov, A.N., (2009). Radioecology of urban landscape through the example of the town of Pripyat. Problems of the Chernobyl exclusion zone. Vienna: IAEA.
  • 11. Halkos, G., Managi S., and Tzeremes N.G., (2015). The effect of natural and man-made disasters on countries’ production efficiency. Journal of Economic Structures, 4(10). https://doi.org/10.1186/s40008-015-0019-2.
  • 12. IAEA (2018). Preparation, Conduct and Evaluation of Exercises for Security of Nuclear and Other Radioactive Material in Transport. Vienna: IAEA, pp. 36–39.
  • 13. Innovation in Crisis Management (2023) edited by C. Fonio, A. Widera, T. Zwęgliński. London and New York: Routledge – Taylor & Francis Group.
  • 14. Izumi T., Shaw, R., Djalante R., Ishiwatari, M., Komino T., (2019). Disaster risk reduction and innovations. Progress in Disaster Science, 2. https://doi.org/10.1016/j. pdisas.2019.100033.
  • 15. Kalinichenko, S.A., Nikitin, A.N., Cheshyk, I.A., Shurankova, O.A., (2020). Spatial Distribution of 90Sr in the Ecosystems of Polesye State Radiation-Ecological Reserve. In: Strontium Contamination in the Environment edited by P. Pathak, D. Gupta. The Handbook of Environmental Chemistry, vol. 88. Springer, Cham. https://doi. org/10.1007/978-3-030-15314-4_7.
  • 16. Kudzin, M., Zabrotski, V., Garbaruk, D., Uhlianets, A., (2020). 90Sr in the Components of Pine Forests of Belarusian Part of Chernobyl NPP Exclusion Zone. In: Strontium Contamination in the Environment edited by P. Pathak, D. Gupta. The Handbook of Environmental Chemistry, vol. 88. Springer, Cham. https://doi.org/10.1007/978-3-030- 15314-4_9.
  • 17. Kulmala, I., Salmela, H., Kalliohaka, T., Zwęgliński, Z., Smolarkiewicz, M., Taipale, A., Kataja, J., (2016). A tool for determining sheltering efficiency of mechanically ventilated buildings against outdoor hazardous agents. Building and Environment, vol. 106, pp. 245–253. http://www.sciencedirect.com/science/article/pii/S0360132316302414.
  • 18. Kulmala, I., Zwęgliński, T., Smolarkiewicz, M., Salmela, H., Kalliohaka, T., Taipale, A., Kataja, J. and Mäkipää, V., (2020). Effect of enhanced supply air filtration in buildings on protecting citizens from environmental radioactive particles, Building Simulation, 13, pp. 865–872. https://doi.org/10.1007/s12273-020-0621-6.
  • 19. Price, P.C., (2015). Quasi-Experimental Research. In P.C. Price, R.S. Jhangiani, I.A. Chiang (Eds.), Research Methods of Psychology (125–142). Washington DC, USA: BCcampus. November 15, 2020. https://opentextbc.ca/researchmethods/.
  • 20. Project “End-user driven DEmo for cbrNe (EDEN)” (2016), Report: D65.8 – Evaluation Report of the RN
  • 21. Regulation of the Polish Council of Ministers of the Republic of Poland dated August 11, 2021 on indicators to determine the doses of ionizing radiation used in assessing exposure to ionizing radiation (Journal of Laws no. 2021 pos. 1657).
  • 22. Shaw, R., Izumi, T., Shi, P., (2016). Perspectives of Science and Technology in Disaster Risk Reduction of Asia. International Journal of Disaster Risk Science, 7: 329–342. Demonstration, Brussels: European Commission. https://doi.org/10.1007/s13753-016-0104-7.
  • 23. Sholoiko, A., (2017). Financing losses from natural and man-made disasters by use of crowdfunding. Investment Management and Financial Innovations, 14(2-1):218–225. https://doi.org/10.21511/imfi.14(2-1).2017.07.
  • 24. Smolarkiewicz, M., Zwęgliński, T. and Ogrodnik, P., (2023). New Approach to Selection of Innovative Solutions Tailored to the Practitioners’ Needs. In: Innovation in Crisis Management edited by C. Fonio, A. Widera, T. Zwęgliński, pp. 151–169. London and New York: Routledge – Taylor & Francis Group. DOI: 10.4324/9781003256977-12.
  • 25. Telizhenko O., Mashyna, Y., Opanasyuk Y., (2017). Organizational and economic basis of natural and man-made disasters consequences management. Journal of Environmental Management and Tourism, 8(1): 270–278. https://doi.org5/10.1405// jemt.v8.1(17).25.
  • 26. Weigel, C., Schäffner, G., Kattwinkel, P., Viehweg, P., Hehle M., Bergmann, D., (2010). Technologies for exhaust aftertreatment testing under real conditions. MTZ Worldwide, 71: 48–53. https://doi.org/10.1007/BF03228001
  • 27. Yeremenko, S., Sydorenko, V., Andrii, P., Shevchenko, R., & Vlasenko, Y., (2021). Existing Risks of Forest Fires in Radiation Contaminated Areas: A Critical Review. Ecological Questions, 32(3), 35–47. https://doi.org/10.12775/EQ.2021.022.
  • 28. Yoschenko, V., Ohkubo, T. and Kashparov, V., (2018). Radioactive contaminated forests in Fukushima and Chernobyl. Journal of Forest Research, 23:1, 3–14, DOI: 10.1080/13416979.2017.1356681.
  • 29. Zwęgliński, T., (2020). The Use of Drones in Disaster Aerial Needs Reconnaissance and Damage Assessment – Three-Dimensional Modeling and Orthophoto Map Study, Sustainability, 12(15): 6080. https://doi.org/10.3390/su12156080.
  • 30. Zwęgliński, T., Maksimenko, A. and Smolarkiewicz, M., (2019). Exercising in a Radioactive Environment – a Case Study from CBRNE Exercise in Chernobyl Exclusion Zone, Safety & Fire Technology, vol. 54 (issue 2), pp. 160–166.
  • 31. Zwęgliński, T., Smolarkiewicz, M., (2023). Three-Dimensional Model and Orthophotomap’s Quality Evaluation Towards Facilitating Aerial Reconnaissance of Flood Response Needs. In: Innovation in Crisis Management edited by C. Fonio, A. Widera, T. Zwęgliński, pp. 215–233. London and New York: Routledge – Taylor & Francis Group, 2023. DOI: 10.4324/9781003256977-17.
  • 32. Zwęgliński, T., Vermeulen, C.-J., Smolarkiewicz, M., Foks-Ryznar, A., Bralewska, K. and Wiśniewski, B., (2023). Dynamic Flood Modelling in Disaster Response. In: Innovation in Crisis Management edited by C. Fonio, A. Widera, T. Zwęgliński, pp. 173–197. London and New York: Routledge – Taylor & Francis Group. DOI: 10.4324/9781003256977-14.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5592a639-7d11-47d9-8607-dc967cb9a3d3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.