Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The CFD modelling of heat transfer in a microtubular Solid Oxide Fuel Cell (mSOFC) stack has been presented. Stack performance predictions were based on a 16 anode-supported microtubular SOFCs sub-stack, which is a component of the overall stack containing 64 fuel cells. Both radiative and convective heat transfer were taken into account in the modelling. The heat flux value corresponded to the cell voltage of 0.7 [V]. Two different cases of the inlet air velocity of 2.0 and 8.5 [ms–1] were considered. It was found that radiation accounted for about 20–30 [%] of the total heat flux from the active tube surface, which means that the convective heat transfer predominated over the radiative one.
Czasopismo
Rocznik
Tom
Strony
51--55
Opis fizyczny
Bibliogr. 11 poz., rys., wz.
Twórcy
autor
- West Pomeranian University of Technology, Szczecin, Institute of Chemical Engineering and Environmental Protection Processes, al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology, Szczecin, Institute of Chemical Engineering and Environmental Protection Processes, al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology, Szczecin, Institute of Chemical Engineering and Environmental Protection Processes, al. Piastów 42, 71-065 Szczecin, Poland
Bibliografia
- 1. Lockett, M., Simmons, M.J.H. & Kendall, K. (2004). CFD to predict temperature profiles for scale up of microtubular SOFC stacks. J. Pow. Sources. 131, 243–246. DOI: 10.1016/j.powsour.2003.11.082.
- 2. Akhtar, N., Decent, S.P. & Kendall, K. (2010). Numerical modelling of methane-powered microtubular single chamber solid oxide fuel cell. J. Pow. Sources. 195, 7796–7807. DOI: 10.1016/j.powesourc.2010.01.084.
- 3. Akhtar, N. (2012). Microtubular, single-chamber solid oxide fuel cell (MT-SC-SOFC) stacks: Model development. Chem. Eng. Res. & Des. 90, 814–824. DOI: 10.1016/j.cherd.2011/09/013.
- 4. Lee, S.B., Lim, T.H., Song, R.H., Shin, D.R. & Dong, S.K. (2008). Development of a 700 W anode-supported micro-tubular SOFC stack for APU applications. Inter. J. Hydrogen Energy. 33, 2330–2336. DOI: 10.1016/j.ijhydene.2008.02.034.
- 5. Zeng, M., Yuan, J., Zhang, J., Sunden, B. & Wang, Q. (2012). Investigation of thermal radiation effects on solid oxide fuel cell performance by a comprehensive model. J. Pow. Sources. 206, 185–296. DOI: 10.1016/j. powsour.2012.01.130.
- 6. Andersson, M., Yuan, J. & Sunden, B. (2012). SOFC modeling considering electrochemical reactions at the active three phase boundaries. Inter. J. Heat & Mass Transfer. 55, 773–788. DOI: 10.1016/j.ijheatmasstransfer.2011.10.032.
- 7. Meier, Ch., Hocker, Th. Bieberle-Hutter, A. & Gauckler, L. (2012). Analyzing a micro-solid oxide fuel cell system by global energy balances. Inter. J. Hydrogen Energy. 37, 10318–10327. DOI: 10.1016/j.ijhydene.2012.04.009.
- 8. Pianko-Oprych, P., Kasilova, E. & Jaworski, Z. (2013). Modelling of processes in a microtubular Solid Oxide Fuel Cell. Inż. Apar. Chem. 5, 462–464.
- 9. Howe, K., Thompson, G.J. & Kendal, K. (2011). Micro-tubular solid oxide fuel cells and stacks. J. Pow. Sources, 196, 1677–1686. DOI: 10.1016/j.jpowsour.2010.09.043.
- 10. Meadowcroft, A.D., Kendall, K., Kendall, M. (2013). Internal report on testing micro-tubular SOFCs in Unmanned Air Vehicles, SUAV project.
- 11. Kupecki, J., Milewski, J. Jewulski, J. (2013). Investigation of SOFC material properties for plant-level modelling. Centr. Europ. J. Chem., 11, 5, 664–671.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-558c7e05-c92f-4743-bd1c-29d23c6e6f7a