PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Diagnostic sonance: sound-based approach to assess engine ball bearing health in automobiles

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Sonance diagnostyczne: podejście oparte na dźwięku do oceny stanu łożysk kulkowych silnika w samochodach
Języki publikacji
EN
Abstrakty
EN
Induction motors have been extensively used in the automobile industry. This paper introduces an innovative sound-based Engine Classification method to identify the defects in engine ball-bearing. We employ sound-based sound component extraction techniques to identify recurring patterns over time. Our research uses the NASA-bearing dataset and proposes enhancements to Resnet and Hybrid CNN Models. We gain invaluable insights into the method’s performance with good accuracy rates.
PL
Silniki indukcyjne są szeroko stosowane w przemyśle samochodowym. W artykule przedstawiono innowacyjną metodę klasyfikacji silników opartą na dźwięku, pozwalającą na identyfikację uszkodzeń łożysk kulkowych silnika. Stosujemy techniki ekstrakcji komponentów dźwięku w oparciu o dźwięk, aby zidentyfikować powtarzające się wzorce w czasie. W naszych badaniach wykorzystujemy zbiór danych NASA i proponujemy ulepszenia modeli Resnet i hybrydowych CNN. Uzyskujemy bezcenne informacje na temat wydajności metody przy dobrych wskaźnikach dokładności.
Rocznik
Strony
72--76
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
  • Karunya Institute of Technology and Sciences, Coimbatore, India
  • Karunya Institute of Technology and Sciences, Coimbatore, India
  • Grace College of Engineering Tiruchendur,Thoothukudi, India.
  • Karunya Institute of Technology and Sciences, Coimbatore, India
Bibliografia
  • [1] Fu C., Jean JS., Weidong Z., Kuan L., and Yongfeng Y. A state-of-the-art review on uncertainty analysis of rotor systems. Mechanical Systems and Signal Processing 183 (2023): 109619.
  • [2] Akpudo, Ugochukwu E., and Jang WH., Towards bearing failure prognostics: A practical comparison between data-driven methods for industrial applications. Journal of Mechanical Science and Technology 34 (2020), 4161-4172.
  • [3] Bermeo A., Miguel A., Vincent C., Carlos OM., and Javier., Remaining useful life estimation of ball-bearings based on motor current signature analysis. Reliability Engineering & System Safety 235 (2023), 109-209.
  • [4] ADAMCZYK M, ORŁOWSKA-KOWALSKA T. Bezpośrednie polowo-zorientowane sterowanie silnikiem indukcyjnym tolerujące uszkodzenia czujników prądu z wykorzystaniem podwójnego zmodyfikowanego obserwatora Luenbergera. Przeglad Elektrotechniczny. 2023 Apr 1;99(4).
  • [5] Ródenas.P., M.J., Combination of noninvasive approaches for general assessment of induction motors. IEEE Trans. Ind. Applicat. 51(3), 2172–2180 (2015)
  • [6] Huang, D.,Novel adaptive search method for bearing fault frequency using stochastic resonance quantified by amplitudedomain index. IEEE Trans. Instrum. Meas. 69(1), 109–121 (2020)
  • [7] Glowacz A., Acoustic-based fault diagnosis of three-phase induction motor. Applied Acoustics 137, 82–89 (2018)
  • [8] Delgado-Arredondo, P.A., Methodology for fault detection in induction motors A sound and vibration signals. Mech. Syst. Signal Process. 83, 568–589 (2017)
  • [9] Santos, Herman, Scalassara P., Endo W., Goedtel A., Guedes J., and Gentil M., Non-invasive sound-based classifier of bearing faults in electric induction motors. IET Science, Measurement & Technology 15, no. 5 (2021): 434-445.
  • [10] Encalada-Dávila, Ángel, Puruncajas B., Tutivén C., and Vidal Y., "Wind turbine main bearing fault prognosis based solely on scada data." Sensors 21, no. 6 (2021): 2228.
  • [11] Liu, Zepeng, Wang X., and Zhang L., Fault diagnosis of industrial wind turbine blade bearing using acoustic emission analysis. IEEE Transactions on Instrumentation and Measurement 69, no. 9 (2020): 6630-6639.
  • [12] Kreuzer., Matthias., Schmidt D., Wokusch S., and Kellermann W., Airborne-Sound Analysis for the Detection of Bearing Faults in Railway Vehicles with Real-World Data. arXiv preprint arXiv:2304.07307 (2023).
  • [13] Karyatanti, Prahmana I.D., Zulkifli R.S.,Noersena A., Purnomo. F.R, Dewantara B.Y., and Wijayanto A. Identification of Ball Bearing Damage On Induction Motors Through Sound Signal Analysis. Journal of Electrical and Electronics Engineering 15, no. 1 (2022): 33-38.
  • [14] Lucena-Junior, Anselmo J., Lima T.L.V, Bruno G.P., Alisson V. Brito, Ramos. J.G, Belo. F.A., and Lima-Filho A.C., Chaos theory using density of maxima applied to the diagnosis of three-phase induction motor bearings failure by sound analysis. Computers in Industry 123 (2020): 103304
  • [15] Singh, Mahesh K., Kumar S., and Nandan D., Faulty Voice Diagnosis of Automotive Gearbox Based on Acoustic Feature Extraction and Classification Technique. Journal of Engineering Research (2023): 100051
  • [16] Santos, Herman, Scalassara P., Endo W., Guedes A.G.J, and Murillo Gentil. Non-invasive sound-based classifier of bearing faults in electric induction motors. IET Science, Measurement & Technology 15, no. 5 (2021): 434-445.
  • [17] Pang, Liang, Yang Q., Shen H., Qin H, and ZhaoC. Research on vibration and noise of magnetic pole eccentricity tangential magnetizing parallel structure hybrid excitation synchronous motor. Energy Reports 8 (2022): 233-240.
  • [18] Balakrishna P., and Khan U., An autonomous electrical signature analysis-based method for faults monitoring in industrial motors. IEEE Transactions on Instrumentation and Measurement 70 (2021), 1-8.
  • [19] Yang, Cheng, and Jia M., Hierarchical multiscale permutation entropy-based feature extraction and fuzzy support tensor machine with pinball loss for bearing fault identification. Mechanical Systems and Signal Processing 149 (2021), 107182.
  • [20] Cui, Mingliang, Wang Y., Lin X., and Zhong M., Fault diagnosis of rolling bearings based on an improved stack autoencoder and support vector machine. IEEE Sensors Journal 21, no. 4 (2020): 4927-4937.
  • [21] Bai., Ruxue., Xu Q., Meng Z., Cao L., Xing K., and Fan F., Rolling bearing fault diagnosis based on multi-channel convolution neural network and multi-scale clipping fusion data augmentation. Measurement 184 (2021): 109885.
  • [22] Serra, Angela, Fratello M., Cattelani L, Liampa I., Melagraki G., Kohonen P., Nymark P., Transcriptomics in toxicogenomics, part III: data modelling for risk assessment. Nanomaterials 10, no. 4 (2020): 708.
  • [23] SZYMAŃSKI, S., GÓRSKI, K., & GRZESIAK, J. (2023). System detekcji i pozycjonowania bezzałogowych statków powietrznych. Przeglad Elektrotechniczny, 2023(9).
  • [24] https://www.kaggle.com/datasets/vinayak123tyagi/bearingdataset
  • [25] Tamazin., Mohamed., Gouda A., and Khedr M., Enhanced automatic speech recognition system based on enhancing power-normalized cepstral coefficients. Applied Sciences 9, no. 10 (2019): 2166
  • [26] Xie, Suchao, Liu R., Du L., and Tan H., Anomaly detection in rolling bearings based on the Mel-frequency cepstrum coefficient and masked autoencoder for distribution estimation. Structural Control and Health Monitoring 29, no. 11 (2022): e3096.
  • [27] D. S. A, S. Juliet, K. Ezra, M. Palmer and B. A. Flora J, "Frequency based Audio Classification for Preventive Maintenance in Automobile Engines," 2023 First International Conference on Advances in Electrical, Electronics and Computational Intelligence (ICAEECI), Tiruchengode, India, 2023, pp. 1-6
  • [28] Akdeniz, Fulya, and Becerikli Y., Linear Prediction Coefficients based Copy-Move Forgery Detection in Audio Signal. In 2022 International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), pp. 770-773. IEEE, 2022.
  • [29] Kadiri, Reddy S., and Alku P., Analysis and detection of pathological voice using glottal source features. IEEE Journal of Selected Topics in Signal Processing 14, no. 2 (2019): 367379.
  • [30] Saldanha, Jennifer C., and Suvarna M., Perceptual linear prediction feature as an indicator of dysphonia. In Advances in Control Instrumentation Systems Select Proceedings of CISCON 2019, pp. 51-64.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-558c2191-8189-45d4-9db2-af34e832da79
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.