Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: Fiber metal laminates (FML) are a new composite, particularly the CAJRAL type laminate, consisting of aluminium and a carbon/jute/epoxy composite. The present work aims to develop low-density Fiber metal laminates (FML) with good mechanical properties for aerospace applications. Design/methodology/approach: FML combines the good characteristics of metal, such as ductility and durability, with the benefits of fibre composite materials, such as high specific strength, high specific stiffness, good corrosion resistance and fatigue resistance. The present work introduces an FML consisting of aluminium and Carbon/Jute/epoxy layers. The FML was produced by the hand lay-up technique. The aluminium sheets were surface-treated with the sobbing method. Two combinations of laminate sequencing were selected: Ca 0°/Ca 45°/Al/Ju 45° and Ca 0°/Al/Ca 0°/Al/Ju 0°. Findings: The structure characterisation after bending tests is shown and discussed. The three point-bending tests are conducted according to ASTM D 2344 standard specifications. Sample-1 (Ca 0°/Ca 45°/Al/Ju 45°/Ju 45°/Al/Ca 45°/Ca 0°) is a better result. Research limitations/implications: Preliminary studies have shown that the metal layers in the laminates and the composite carbon layer, particularly in the bend area of the laminate, significantly impact the nature of the damage. Laminate indicates the complexity of the degradation process of these materials. Practical implications: The orientation of the reinforcing fibres influences the degree of the laminate structure and affects the ability to form laminates. An important factor influencing the properties of the laminate as a whole is to provide high adhesive properties of the composite-metal connections. Originality/value: By replacing aluminium with jute. It is observed that the tensile and flexure stresses of the CAJRAL with Ca 0°/Ca 45°/Al/Ju 45°/Ju 45°/Al/Ca 45°/Ca 0° are more compared with Ca 0°/Al/Ca 0°/Al/Ju 0°/Ju 0°/Al/Ca 0°/Al/Ca 0°.
Wydawca
Rocznik
Tom
Strony
15--21
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
autor
- Department of Mechanical Engineering, Jayaraj Annapakiam CSI College of Engineering, Nazareth, Thoothukudi 628617, Tamil Nadu, India
autor
- Faculty of Mechanical Engineering, Opole University of Technology, ul. Proszkowska 76, 45-758 Opole, Poland
autor
- Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi, 626005, Tamil Nadu, India
autor
- Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi, 626005, Tamil Nadu, India
autor
- Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi, 626005, Tamil Nadu, India
autor
- Department of Computer Science and Engineering, Francis Xavier Engineering College, Tirunelveli 627002, India
Bibliografia
- 1] N.R.J. Hynes, M. Vivek Prabhu, P. Nagaraj, Joining of hybrid AA6063-6SiCp-3Grp composite and AISI 1030 steel by friction welding, Defence Technology 13/5 (2017) 338-345. DOI: https://doi.org/10.1016Zi.dt.2017.05.014
- [2] N.R.J. Hynes, A.M. Nithin, Simulation on friction taper plug welding of AA6063-20Gr metal matrix composite, AIP Conference Proceedings 1728/1 (2016) 020544. DOI: https://doi.org/10.1063/1.4946595
- [3] N.R.J. Hynes, R. Kumar, R. Tharmaraj, P. Shenbaga Velu, Production of aluminium metal matrix composites by liquid processing methods, AIP Conference Proceedings 1728/1 (2016) 020558. DOI: https://doi.org/10.1063/1.4946609
- [4] N.R.J. Hynes, R. Kumar, K. Marimuthu, S. Planichamy, A. Khan, A.M. Asiri, M. Asad, Graphene-based nano metal matrix composites: A review, in: A. Khan, M. Jawaid, Inamuddin, A.M. Asiri (eds), Nanocarbon and its Composites, Woodhead Publishing Series in Composites Science and Engineering, Woodhead Publishing, Sawston, Cambridge, 2019, 153-170. DOI: https://doi.org/10.1016/B978-0-08-102509-3.00006-7
- [5] N.R.J. Hynes, R. Sankaranarayanan, M. Kathiresan, P. Senthamaraikannan, A. Khan, A.M. Asiri, I. Khan, Synthesis, properties, and characterization of carbon nanotube-reinforced metal matrix composites, in: A. Khan, M. Jawaid, Inamuddin, A.M. Asiri (eds), Nanocarbon and its Composites, Woodhead Publishing Series in Composites Science and Engineering, Woodhead Publishing, Sawston, Cambridge, 2019, 805-830. DOI: https://doi.org/10.1016/B978-0-08-102509-3.00027-4
- [6] J. Jerome, N.R.J. Hynes, R. Sankaranarayanan, Mechanical behavioural testing of fibre metal laminate composites, AIP Conference Proceedings 2220/1 (2020) 140035. DOI: https://doi.org/10.1063/5.0001244
- [7] N.R.J. Hynes, S. Raja, R. Tharmaraj, C.I. Pruncu, D. Dispinar, Mechanical and tribological characteristics of boron carbide reinforcement of AA6061 matrix composite, Journal of the Brazilian Society of Mechanical Sciences and Engineering 42/1 (2020) 155. DOI: https://doi.org/10.1007/s40430-020-2237-2
- [8] G. Sundar, N.R.J. Hynes, Reinforcement in aluminium metal matrix composites, AIP Conference Proceedings 2142/1 (2019) 070006. DOI: https://doi.org/10.1063/1.5122398
- [9] G. Sundar, N.R.J. Hynes, Corrosion issues in metal matrix composites & Bi-metals, AIP Conference Proceedings 2142/1 (2019) 070007. DOI: https://doi2org/10.1063/125122399
- [10] J.P. Annaraj, N. Bose, N.R.J. Hynes, A review on mechanical and tribological properties of sintered copper matrix composites, AIP Conference Proceedings 2142/1 (2019) 070027. DOI: https:ZZdoi;orgZ10.1063Z125122419
- [11] N.R.J. Hynes, R. Sankaranarayanan, R. Tharmaraj, C.I. Pruncu, D. Dispinar, A comparative study of the mechanical and tribological behaviours of different aluminium matrix-ceramic composites, Journal of the Brazilian Society of Mechanical Sciences and Engineering 41/8 (2019) 330. DOI: https://doi.org/10.1007/s40430-019-1831-7
- [12] N.R.J. Hynes, R. Kumar, Electrochemical Machining of Aluminium Metal Matrix Composites, Surface Engineering and Applied Electrochemistry 54/4 (2018) 367-373. DOI: https://doi.org/10.3103/S1068375518040087
- [13] A.A. da Costa, D.F.N.R. da Silva, D.N. Travessa, E.C. Botelho, The effect of thermal cycles on the mechanical properties of fiber-metal laminates, Materials and Design 42 (2012) 434-440. DOI: https://doi.org/10.1016Zj.matdes.2012.06.038
- [14] E.C. Botelho, L.C. Pardini, M.C. Rezende, Evaluation of hygrothermal effects on the shear properties of Carall composites, Materials Science and Engineering: A 452-453 (2007) 292-301. DOI: https7/dorLog10;1016/jjmsea;2006.10.127
- [15] J. Qiu, E. Sakai, L. Lei, Y. Takarada, S. Murakami, Improving the shear strength by silane treatments of aluminum for direct joining of phenolic resin, Journal of Materials Processing Technology 212/11 (2012) 2406-2412. DOI: https://doi.org/10.1016/j.jmatprotec.2012.07.008
- [16] O. Lunder, F. Lapique, B. Johnsen, K. Nisancioglu, Effect of pre-treatment on the durability of epoxybonded AA6060 aluminium joints, International Journal of Adhesion and Adhesives 24/2 (2004) 107-117. DOI: https://doi.org/10.1016zi.iiadhadh.2003.07.002
- [17] K.S. Ahmed, S. Vijayarangan, Tensile, flexural and interlaminar shear properties of woven jute and juteglass fabric reinforced polyester composites, Journal of Materials Processing Technology 207/1-3 (2008) 330-335. DOI: https://doi.org/10.1016zi.imatprotec.2008.06.038
- [18] K. Murali Mohan Rao, K. Mohana Rao, A.V. Ratna Prasad, Fabrication and testing of natural fiber composite: vakka, sisal, bamboo and banana, Materials and Design 31/1 (2010) 508-513. DOI: https://doi.orд/10.1016zj.matdes.2009.06.023
- [19] F.D. Moriniere, R.C. Alderliesten M. Sadighi, R. Benedictus, An integrated study on the low-velocity impact response of the GLARE fibre-metal laminate, Composite Structures 100 (2013) 89-103. DOI: https://doi.orд/10.1016zi.compstruct.2012.12.016
- [20] D.A. Papargyris, R.J. Day, A. Nesbitt, D. Bakavos, Comparison of the mechanical and physical properties of a carbonfibre epoxy composite manufactured by resin transfer moulding using conventional and microwave heating, Composites Science and Technology 68/7-8 (2008) 1854-1861. DOI: https://doi.org/10.1016/j.compscitech.2008.01.010
- [21] V. Shenoy, I.A. Ashcroft, G.W. Critchlow, A.D. Crocombe, Fracture mechanics and damage mechanics based fatigue lifetime prediction of adhesively bonded joints subjected to variable amplitude fatigue, Engineering Fracture Mechanics 77/7 (2010) 10731090. DOI: https://doi.org/10.1016/j.engfracmech.2010.03.008
- [22] L. Sorrentino, L. Carrino, Influence of process parameters of oxygen cold plasma treatment on wettability ageing time of 2024 aluminium alloy, International Journal of Adhesion and Adhesives 29/2 (2009) 136-143. DOI: https://doi.org/10.1016Zi.iiadhadh.2008.01.009
- [23] Z.U. Arif, M.Y. Khalid, W. Ahmed, H. Arshad, S. Ullah, Recycling of the glass/carbon fibre reinforced polymer composites: A step towards the circular economy, Polymer-Plastics Technology and Materials 61/7 (2022) 761-788. DOI: https://doi.org/10.1080/25740881.2021.2015781
- [24] M.Y. Khalid, Z.U. Arif, M. Hossain, R. Umer, Recycling of wind turbine blades through modern recycling technologies: A road to zero waste, Renewable Energy Focus 44 (2023) 373-389. DOI: https://doi.org/10.1016/j.ref.2023.02.001.
- [25] M.Y. Khalid, Z.U. Arif, W. Ahmed, H. Arshad, Evaluation of tensile properties of fiber metal laminates under different strain rates, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 236/2 (2022) 556-564. DOI: https://doi.org/10.1177/09544089211053063
- [26] M.Y. Khalid, Z.U. Arif, A. Al Rashid, M.I. Shahid, W. Ahmed, A.F. Tariq, Z. Abbas, Interlaminar shear strength (ILSS) characterization of fiber metal laminates (FMLs) manufactured through VARTM process, Forces in Mechanics 4 (2021) 100038. DOI: https://doi.org/10.1016ij.finmec.2021.100038
- [27] M.Y. Khalid, A. Al Rashid, M. Sheikh, Effect of Anodizing Process on Inter Laminar Shear Strength of GLARE Composite through T-Peel Test: Experimental and Numerical Approach, Experimental Techniques 45 (2021) 227-235. DOI: https://doi.org/10.1007/s40799-020-00433-1
- [28] R. Sankaranarayanan, N.R.J. Hynes, Prospects of joining multi-material structures, AIP Conference Proceedings 1953/1 (2018) 130021. DOI: https://doi.org/10.1063/1.5033165
- [29] R. Sankaranarayanan, N.R.J. Hynes, Friction riveting for joining of wide range of dissimilar materials, AIP Conference Proceedings 2142/1 (2019) 150004. DOI: https://doi.org/10.1063/1.5122553
- [30] N.R.J. Hynes, R. Sankaranarayanan, J.A.J. Sujana, A decision tree approach for energy efficient friction riveting of polymer/metal multi-material lightweight structures, Journal of Cleaner Production 292 (2021) 125317. DOI: https://doi.org/10.1016/j.jclepro.2020.125317
- [31] R. Sankaranarayanan, N.R.J. Hynes, D. Li, A. Chrysanthou, S.T. Amancio-Filho, Review of Research on Friction Riveting of Polymer/Metal Light Weight Multi-Material Structures, Transactions of the Indian Institute of Metals 74 (2021) 2541-2553. DOI: https://doi.org/10.1007/s12666-021-02356-w
- [32] R. Sankaranarayanan, N.R.J. Hynes, M.P. Nikolova, J.B. Królczyk, Self-Pierce Riveting: Development and Assessment for Joining Polymer - Metal Hybrid Structures in Lightweight Automotive Applications, Polymers 15/20 (2023) 4053. DOI: https://doi.org/10.3390/polym15204053
- [33] R.J.H. Navasingh, M.K. Gurunathan, M.P. Nikolova, J.B. Królczyk, Sustainable Bioplastics for Food Packaging Produced from Renewable Natural Sources, Polymers 15/18 (2023) 3760. DOI: https://doi.org/10.3390/polym15183760
- [34] M.K. Gurunathan, N.R.J. Hynes, O.A. Al-Khashman, M. Brykov, N. Ganesh, A. Ene, Study on the Impact and Water Absorption Performance of Prosopis juliflora and Glass Fibre Reinforced Epoxy Composite Laminates, Polymers 14/15 (2022) 2973. DOI: https://doi.org/10.3390/polym14152973
- [35] N.R.J. Hynes, N.J. Vignesh, C. Barile, P.S. Velu, T. Baskaran, J.T.W. Jappes, O.A. Al-Khashman, M. Brykov, A. Ene, Green corrosion inhibition on carbonfibre-reinforced aluminium laminate in NaCl using Aerva Lanata flower extract, Polymers 14/9 (2022) 1700. DOI: https://doi.org/10.3390/polym14091700
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5585de9f-94a8-4ea7-9311-3d239cbcae52