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Abstract: The paper presents a method for solving electromagnetic field problems by 
applying impedance boundary conditions for systems including conducting bodies of 
nonlinear magnetic properties in an excited harmonic field. Three types of impedance 
boundary conditions were derived. A procedure for computing surface impedance based 
on the transfer matrix is proposed. This procedure has been tested by comparing com-
putational results to calculations where time function distortions were considered, and to 
the experimental data. 
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1. Introduction 
 
 Surface Impedance Boundary Conditions (SIBC) have been successfully applied to solving 
electrodynamic problems for complex geometry systems (see e.g. [1-7], more extensive refe-
rences on this subject can be found in [3]). SIBC are to be applied to systems where skin effect 
occurs. It is related to tangential components of the electric E and magnetic field H on the 
conducting surface being mutually normal, and their ratio, so called surface impedance, to be 
constant. Such dependencies allow to split electromagnetic field distribution calculations into 
separate, unrelated problems that can be formulated separately for each specific area of the 
system under consideration. 
 The basic requirements for effective SIBC application include electromagnetic penetration 
depth to be small in comparison to the curvature radius of the interface, and the field function to 
be only slightly variable along the tangents to these surfaces. Such conditions are easily satisfied 
in electromagnetic systems of high frequencies (e.g. radio frequencies). The skin effect is 
strongly pronounced there. Low frequency systems (e.g. power-line frequencies) may prove 
fairly compliant and eligible for SIBC application [4-7] – as well. 
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 Commonly SIBC are developed for systems of linear and homogenous medium that is of 
constant electromagnetic parameters. Nevertheless, such an assumption does not provide pre-
requisites for developing SIBC [1]. Wherever analysed systems cover either inhomogeneous, or 
non-linear areas, it is still necessary to modify SIBC and the methodology for computing specific 
parameters, as presented in chapter 3 of this paper.  
 A general method for solving nonlinear, quasi-stationary problems of 3D electrodynamics 
with SIBC was proposed [8, 9, 11]. It is based on Fundamental Solutions Method (FSM). 
Magnetic field distribution is found iteratively as self-consistent distribution of the magnetic 
field at magnetically active surfaces (i.e. ferromagnetic) of magnetic permeability determined 
from the given magnetisation curve μ = μ (H). Introductory numerical experiments performed 
for model problems confirmed the method to be correct and fairly convergent. However, only a 
simplified determination of SIBC parameters was assumed, specifically, while developing the 
formulas an assumption on linearity was made, and only a properly modified, local value for 
magnetic permeability based on the magnetisation curve were substituted into. Obviously, such 
an approach disregards e.g. the magnetic permeability dependence on the distance from the 
conductor surface, which may significantly contribute to errors. Therefore, the next step was to 
develop a more precise procedure for determining local surface impedance values [11].  
 The procedure made use of the transfer matrix concept and applied it to compute electro-
magnetic field distribution in the layer structures [10]. The skin area beneath the conductor 
surface divided into discreet elements, within which a constant (invariant in time) value, as of the 
magnetisation curve, for the magnetic permeability is assumed. It means that under a harmonic 
excitation field, the induced field functions are harmonic as well. Under such an assumption, the 
analysis of electrodynamic systems is much facilitated. It allows to disregard time dependence 
by introducing Maxwell equations in their complex form. Still, the problem arises how to 
determine a substitute magnetic permeability for particular elements of the skin layer. In this 
paper, the procedure reported elsewhere [11] has been completed by adding two methods for 
averaging the value of magnetic permeability. 
 Moreover, a way of considering an approximated magnetic hysteresis by applying a complex 
value for the magnetic permeability has been proposed [13, 14]. A series of numerical tests have 
been performed. Results have been compared both to the simulation results where field function 
distortions due to time dependences were included, and to the experimental results presented 
elsewhere [14]. 
 
 

2. Surface Impedance Boundary Conditions  

2.1. A linear approach 
 As it was stated in the Introduction, SIBC are applicable where skin effect occurs, i.e. where 
the electromagnetic field penetrates not too deeply into the areas located under the conductive 
surface. It can be assumed that, for cases where such areas are significantly greater in size than 
the substitute field penetration depth (massive conductor cases), their internal electromagnetic 
field is limited to a thin layer under the surface, which is called a skin layer. The basic dif-
ferential operations in such areas are presented in the Appendix. 
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 By applying these formulas and as long as the assumption that all s1, s2 derivatives of the 
electromagnetic field components are negligible in comparison with their respective s3 deri-
vatives holds, a general relationship between the intensities of the electric and magnetic field at 
the conductor-dielectric boundary surface can be expressed as [1-3]: 

  ( )HnnEn ××=× cZ , (1) 

where Zc denotes surface impedance, n – stands for the unit vector perpendicular to the interface. 
 This relationship is called a surface impedance boundary condition (SIBC) and it means that 
both the electric Et and magnetic Ht field components tangent to the boundary surface are 
mutually normal, and the ratio of their magnitudes: 

  
t

t
cZ

H
E

=  (2) 

depends solely on the local properties of the adjacent areas, i.e. their electromagnetic parameters, 
and on the field frequency.  
 In the homogenous media of linear properties the surface impedance can be expressed by the 
formula [1-3]: 

  
εωjγ

μωj
+

=cZ , (3) 

where: μ, ε, γ and ω stand for magnetic permeability, permittivity, electric conductivity, and 
pulsation, respectively. 
 It shall be underlined here that neither homogeneity, nor linearity of the electromagnetic 
parameters of the areas, provides the necessary assumption while applying the condition (1) [3]. 
Nonetheless, dependence (3) does not hold for nonlinear media and the local Zc magnitude 
should be then determined numerically. In chapter 3 a numerical procedure for determining Zc 
for magnetically nonlinear media is provided. It is based on the transfer matrix approach.  
 Practical arrangements for applying SIBC numerically in a form (1) may prove troublesome, 
as all the components for E and H fields must be computed simultaneously. Fortunately, other 
more convenient SIBC formulation can be found, where parameters related to material properties 
and field frequency other than Zc occur.  
 Below, three other SIBC representations for which fields need to be harmonic and quasi-
stationary (i.e. for which the Maxwell displacement current is negligible) and conductive areas 
linear are presented [2-4, 8, 11]: 

  HnJ ×=  α , (4) 

  n
n H

n
H

β−=
∂

∂
, (5) 

  
n

V
V m

m ∂
∂

= βΔ , (6) 
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where: J stands for current density at the interface, Vm is the magnetic potential (H = – gradVm), 
Hn – normal component of magnetic field, Δ  – surface Laplacian (see (A10)), 

  μγωjα = , (7) 

  
μ
γωjμβ 0= . (8) 

 Though the above relationships result from condition (1), stable material parameters are 
assumed for their derivation. In the chapter that follows analogous dependencies are derived for 
SIBC in the nonlinear (applicable also to non-homogenous) systems. 

2.2. Condition (4) for nonlinear systems 
 Due to Et and Ht components being mutually normal, and from (2) it can be concluded that 
(1) can be rewritten in the form:  

  HnE ×= ct Z . (9) 

 Additionally, as the condition on the continuity for the tangent components of both electric 
and magnetic fields holds, clearly this dependence is correct on both sides of the interface, i.e. on 
the dielectric and conductor side alike. On the conductor side, i.e. within the skin layer, the 
normal component of the electric field does not occur [1], hence 

  tEE = . (10) 

 With the differential Ohm’s law taken into consideration  

  EJ  γ=  (11) 

and (20) (9) we arrive at  

  HnJ ×= cZ γ . (12) 

 By comparing (23) (12) to (15) (4) it may be concluded that the condition has taken on the 
form which is identical to the one for the linear case, as long as  

  cZ γα = . (13) 

2.3. Condition (5) for nonlinear systems 
 Let us assumed that all the field components are sinusoidal functions of time. Though such 
an assumption does not hold for systems including media of nonlinear properties, the error due to 
such a simplification can be acceptable in electrodynamics. Comparisons of the computational 
data performed under such an assumption with computations where time dependent distortions 
in the time field function were taken into account confirmed this supposition. The conclusion 
was also supported with comparison of the experimental data [12] presented in chapter 4.  
 To obtain the sought relationships let us consider a certain neighbourhood of any point P 
within the thin layer area including the dielectric - conductor boundary surface (Fig. A1). The 
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thickness of this sector is assumed to be equal to 2η and to be large enough to include entire skin 
layer of the conducting area; it means that for s3 > η the field is negligible. Within the coordinate 
system s1, s2, s3 introduced in the Appendix we have [ ]1,0,0=n . By denoting  

  [ ] [ ]321321 ,,    ,,, HHHEEE == HE  (14) 

and making use of (9)  

  1221        , HZEHZE cc −== . (15) 

 Within the dielectric sector of the concerned area, as based on Faraday’s law  

  HE 0μωj−=rot . (16) 

 By decomposing from (A8) the third component rot E  

  ( ) ( ) 3011
2

22
121

1 HjEh
s

Eh
shh

ωμ−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂−

∂
∂ . (17) 

 By substituting the dependence (15) to (17), with a few simple operations and applying (A9) 
and (A11)  

  30μωjdiv HZZ cc =⋅+ gradHH . (18) 

 According to (A7) and (A11) 

  
3

3divdiv
s
H

∂
∂

−= HH  (19) 

and as 0div =H for the dielectric area, so 

  c
cc

Z
Z

H
Zs

H  1ωj
3

3

3 grad⋅+−=
∂
∂ H . (20) 

 As s3 represents the component normal to the boundary surface, finally  

  cZ
Z

H
n

H

c
n

n  1 β grad⋅+−=
∂

∂ H , (21) 

where  

  
cZ

0μjωβ = . (22) 

 Relation (21) is a generalised SIBC (5) under the simplified assumptions for the electro-
magnetic field to be harmonic and quasi-stationary. 
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2.4. Condition (6) within a nonlinear approach 
 For quasi-stationary fields, within the dielectric part of the considered system a scalar mag-
netic potential can be introduced:  

  mVgrad−=H , (23) 

that satisfies Laplace’s equation  

  0Δ =mV . (24) 

 By substituting (23) to (20)  

  cm
c

mm ZV
Zs

V

s

V
gradgrad ⋅−

∂

∂
−=

∂

∂
− 1β

3
2
3

2
 (25) 

and on the base of (A6), (A10) and (24) observing that  

  m
m V

s

V
Δ2

3

2
−=

∂

∂ , (26) 

we arrive at the sought generalisation of SIBC for the scalar magnetic potential, namely 

  cm
m

m ZV
Zn

V
V gradgrad ⋅−

∂
∂

β−=
c

1Δ , (27) 

with β derived as in formula (22) (33). 

 
3. Procedure for computing surface impedance  

 Applying SIBC formulas (1), (12), (21), and (27) to solving electromagnetic field problems 
in systems including conducting areas of nonlinear magnetic properties the surface impedance Zc 
distribution at the boundary surfaces for these areas is required to be known. However, local 
magnitude of Zc is known to depend on the magnetic permeability, which in turn depends on the 
magnetic field intensity. Therefore, the procedures for determining Zc and computing field distri-
bution need to be interrelated. A transfer matrix method based concept for numerical procedure 
to compute surface impedance was presented elsewhere [10, 11]. Further in this chapter a brief 
summary of it, completed with some significant supplements is provided. 
 Accordingly to the assumptions made earlier, within the conducting sector of the system 
under consideration the area where electromagnetic field occurs is limited to the skin layer 
beneath the boundary surface (see Fig. 1). The relation μ = μ(H) for this area is assumed to be 
known. The relationship is assumed to be unique, though μ can be also a complex value, which 
allows to incorporate an approximated magnetic hysteresis effect [12, 13].  
 The first step of the proposed procedure is discretization by dividing of the skin layer on the 
surfaces being parallel and perpendicular to the interface, into small volume elements kji ,,Ω , as 
shown in Fig. 1. Magnetic permeability within the element is assumed to be constant (the 
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distribution of magnetic permeability is approximated by the step function). It shall be noticed 
here that under the assumption made earlier, the field is variable, and consequently also magnetic 
permeability variations are much more pronounced along the normal direction than along the 
directions tangent to the surface, and thus the elements width dk, (compare Fig. 1) shall be 
respectively smaller than their dimensions along the directions s1, s2.  
 

Fig. 1. Skin layer area – illustrated method for 
computing surface impedance; i, j, k means 
numbering   indices  in  directions  s1,  s2,  s3 

(respectively) 

 
 With no limitations to the generality of the considerations it can be assumed that within the 
selected element axis s1 is parallel to the vector E, thus  

  [ ]0,0,1E=E ,                 [ ]32 ,,0 HH=H . (28) 

 With such assumptions, the electromagnetic field components in the element kji ,,Ω  (see 
Fig. 1) can be approximated with the functions listed below (to further simplify the notation, 
indexes i, j are ignored). 

  ( ) ( )kkkk ss
k

ss
kk essEessEE ,33,33 ),(),( 21,121,1,1

−α−−α−+ += , (29) 

  ( ) ( )kkkk ss
k

ss
kk essHessHH ,33,33 ),(),( 21,221,2,2

−α−−α−+ += , (30) 

  ( ) ( )kkkk ss
k

ss
kk essHessHH ,33,33 ),(),( 21,321,3,3

−α−−α−+ += , (31) 

where s3, k denotes the initial coordinate of the k 
th sector (compare Fig. 1), 

   kjik ,,μγωjα = ,  μ k  

is substitute magnetic permeability of kΩ  element. To further simplify the notation, indexes i, j 
are ignored. 
 According to Faraday’s law the following relations are obtained  

   
γ
μωj

2

1

2

1 k
k

k

k

k

k Z
H
E

H
E ==−= −

−

+

+

, (32) 
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∂
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∂=
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−
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2
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3 μωj

1
s

E
s
EH kk

k
k . (34) 

 Due to continuity conditions for the tangent components of the electric and magnetic fields, 
E and H, respectively at the boundary between the sectors k and k + 1, it can be shown that 
[10, 11] 

  
⎥
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⎦
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⎢
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where 
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2
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k

k
k Z

Z 1+=λ . (37) 

 The relation between the electric field amplitude in the first layer and beyond the last one, i.e. 
within the area k = n + 1 – (see Fig. 1) can be written as:  

  
⎥
⎥

⎦

⎤
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⎥
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⎣

⎡
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n P , (38) 

where 

  
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
== −

2221

1211
11  .. 

pp

pp
nn MMMP  (39) 

is the transfer matrix for the entire skin layer. By neglecting within the n + 1 area the wave 
incident onto the coordinate s3, then with (32) and (39) it is obtained [11]: 

  
2122

2122
1

01,2

1,1

3

pp
pp

ZZ
H
E

c
s

+
−

==
=

. (40) 

 According to the description provided above the procedure for computing Zc comes down to 
computing the P matrix, which is a simple product of 2nd rank matrices (see formula (39)). Still, 
for nonlinear cases Mk matrix elements cannot be directly computed, as it is necessary to know 
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local magnetic permeability μk values, which are dependent on the magnetic field distribution to 
be computed. Therefore, the concerned procedure has to be linked with another procedure (e.g. 
FEM, BEM, FSM – see [8, 9, 11]) for computing the electromagnetic field distribution within 
the dielectric area under the SIBC condition set at the boundary surfaces. Such a concept as well 
as the results of introductory numerical tests were reported elsewhere [8, 9, 11]. It consists in 
iterative finding electromagnetic field distribution that is self-consistent with the surface 
impedance distribution at the conducting sectors surfaces of the considered system. At each 
iteration step a linear problem is solved. That allows to compute approximately the field dis-
tribution, and based on that, to determine Zc distribution required for the next step of compu-
tations.  
 The very procedure for computing local Zc magnitudes is also of iterative nature. At each 
iteration matrices Mk are computed according to formula (36) for μk values computed in the 
preceding iteration. Then the field distribution within the skin layer is computed from formulas 
(29) – (31), and in turn μk magnitudes for the next iteration are computed from μ = μ(H) relation. 
The process is repeated until the magnetic field distribution within the skin layer is consistent 
with the magnetic permeability distribution (i.e. in each element kΩ  the dependence between μk 
and H follows the magnetisation curve with the acceptable accuracy). The iteration starts with 
constant values for μk.  
 It is crucial to find the values for μk in the skin layer elements. As instantaneous magnitude 
for absolute value of magnetic field intensity varies in time, instantaneous values for magnetic 
permeability can be also significantly variable, though to simplify the problem μk is treated as 
invariable in time. Thus, a problem arises how to set the appropriate value for μk. Three ap-
proaches to determine μk seem most natural, namely 
  – directly from the magnetisation curve based on the magnetic field amplitude  

  )( mk Hμ=μ , (41) 

where Hm corresponds to the magnetic field amplitude in the central point of the kth element of 
the skin layer, 
  – by averaging the μ = μ(H) function 

  ∫μ=μ
mH

m
k HH

H
0

d)(1 , (42) 

  – by averaging over time  

  ∫∫ ϕϕμ=ωμ=μ
π

0

2

0

d)sin(
π
1d)sin(2

m

T

mk HttH
T

. (43) 

 The next chapter deals with numerical experiments where all the above approaches to deter-
mine μk values were taken into consideration. 
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4. Verification of the method 
 
 Introductory numerical test results for the provided method for determining surface impe-
dance were presented elsewhere [11]. The procedure was found to converge effectively. After a 
few iterations the magnetic field distribution was found convergent with the magnetic per-
meability distribution within the skin layer. However, due to assumed simplification, as well as 
with regard to the options applicable while determining μk values, a comparison of the results to 
computations where distortions from the time dependencies had been considered, as well as to 
experimental measurements would prove essential. Such results were reported in another 
paper [12] where the problem of finding electromagnetic field distribution within the conductive 
half-space of nonlinear magnetic properties was considered. Though the magnetic hysteresis 
effect had not been taken into account there, the distortions from the time dependencies were 
considered. The finite difference method computations allowed to determine such relations as 
active power losses as a function of magnetic field intensity on the boundary surface. The results 
were also set against experimental measurements. It shall be highlighted that unit power loss can 
be directly related to the surface impedance with 

  ( ) 2
0Re

2
1 HZP c= , (44) 

where H0 stands for the magnetic field strength at the boundary surface. In Fig. 2 curves denoted 
as 1, 2, 3 are reproduced from [12]. Discrepancies between the experimental curve no 1 and the 
computed one (no 3) were attributed to hysteresis losses not considered in the computations.  
 

Fig. 2. Unit power losses in the conductive half-
space; 1 is a curve where constant magnetic per-
meability was assumed (as reported by [12]), 2 
is a computation curve where time function dis-
tortion were considered (as reported by [12]), 3 
is the measurement curve (as reported by [12]), 
4, 5, 6 are computation curves where time func-
tion distortion were disregarded and obtained for 
formulas (41), (42), (43), respectively, 7 is the 
curve for applied formula (42) with a complex 
magnetic permeability for ψ  = 14 degrees (com- 

pare (45)) 

 
 The remaining curves in Fig. 2 represent the results obtained with the computation procedure 
for determining surface impedance provided hereby with the formula (44). Curves no 4, 5, and 6 
represent various approaches to selecting the substitute magnetic permeability (formulas 
(41)-(43)). A computation curve reported in [12] was closely followed by our curve for which 
average magnetic permeability was applied according to the formula (42) (curve no 5).  
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 The hysteresis losses can be incorporated by applying a complex magnetic permeability 
[13, 14], i.e. the hysteresis curve approximated with an elliptical curve as follows:  

  ψjμμ e= . (45) 

 As the paper [12] does not provide the hysteresis loop for the material for which experi-
mental measurements had been performed, it was not possible to fully verify our method ap-
plicability to this case. Nevertheless, we managed to test compatibility of the measurement curve 
no 1 with our results, and prove it to be the highest for the approach where averaging magnetic 
permeability followed formula (42) with ψ = 14 degrees (curve no 7). 
 
 
 

5. Summary 
 
 A method for solving electromagnetic field problems by applying impedance boundary 
conditions is presented in the paper for systems including conducting bodies of nonlinear mag-
netic properties in an excited harmonic field. Nonlinear properties of the conducting areas cause 
the real field time functions to depart from their clear sinusoidal patterns, which increases 
difficulty of solving. We have proposed a method where a simplified assumption is made for the 
distortions from proper time functions to be disregarded. The resulting error could fall within the 
range acceptable for typical technical systems in electrodynamics. An obvious advantage such an 
assumption brings is applicability of time independent Maxwell equations for complex fields.  
 With the assumption made valid, three types of impedance boundary conditions were derived 
(see formulas (12), (21), (27)) which provided generalised SIBC in linear systems. To apply 
them surface impedance distribution is to be known at the conductor – dielectric boundary 
surfaces of the system under consideration. Therefore, a procedure for computing this quantity 
based on the transfer matrix is proposed. The proposed procedure has been tested by comparing 
computational results to computations where time function distortions were considered, and to 
the measurements data reported elsewhere [12].  
 Based on the performed comparison the following conclusions were drawn: 
  – Accuracy of the presented procedure is highly dependent on the option for determining sub-
stitute magnetic permeability for the skin layer elements of the system (see the differences 
between the curves 4, 5, and 6 in Fig. 2). 
  – By applying averaged magnetic permeability according to formula (42) high compatibility 
with the results with distortions from time dependencies considered was reached. 
  – By applying a complex magnetic permeability, high compatibility with the measurements 
was achieved. 
 Nevertheless, it should be noted here that scarcity of the comparative material prevents us 
from announcing conclusions as final. Comparison of results obtained for the provided method 
with detailed experimental results for various types of magnetic materials would prove par-
ticularly useful.  
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Appendix. Differential operations within thin-layer areas 
 
 In this chapter formulas for basic differential operations within thin-layer areas are presented. 
The thin-layer area of a width of 2η  contains all the points whose distance to the specific surface 
S is either equal to η, or smaller (Fig. A1). It is assumed, that η  is significantly smaller than the 
curvature radius of the surface S at each of its points.  
 Then, at the surface S an orthogonal coordinate system s1, s2 is introduced. Any P point of the 
thin layer area can be defined with s1, s2 coordinates of its orthogonal projection to the surface S 
and s3 coordinate, which is the distance from point P to the considered surface (see Fig. A1). 
 

Fig. A1. A thin-layer area 

 
 Lamé coefficients for any curvilinear coordinate system s1, s2, s3 can be expressed with the 
formula [15] 

  3 ,2 ,1    , 
3

1
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

= ∑
=

i
s
x

h
j i

j
i , (A1) 

where 

  ( )321 ,, sssxx ii =  (A2) 

are the interrelations between coordinate si and any Cartesian coordinate system x1, x2, x3. The 
magnitudes hi, as the lengths of certain vectors, namely the ones tangent to the appropriate 
coordinate lines, are not dependent on any selected Cartesian system. 
 To determine Lamé coefficients for the coordinate system defined above let us consider a 
small thin layer sector within the neighbourhood of any point P. The Cartesian coordinate system 
xi is selected to make x1 and x2 axes tangent to the surface S, and x3 axes to cross the P point (see 
Fig. A1). It can be then safely assumed that within the concerned sector coordinates x1 and x2 are 
practically independent of the coordinate s3, i.e. the depth at which point P is located, hence  

  ,              , ),(           , ),( 3321222111 sxssxxssxx ===  (A3) 
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which when substituted with (1) allows to arrive at 

  .           , ),(           , ),( 3321222111 shsshhsshh ===  (A4) 

 By considering general relations determining basic differential operations for any scalar 
field ϕ and a vector field V in the orthogonal curvilinear coordinate system [15], and by ap-
plying (A4): 
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⎦
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32211
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grad , (A5) 
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 As point P has been freely selected, the relations [A5-A8] for the coordinate system under 
consideration are correct within the entire thin layer sector. 
 The following surface differential operators are used in the paper: 
  – surface gradient  

  ⎥
⎦

⎤
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⎡
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ϕ∂=ϕ 0,1,1

2211 shsh
grad , (A9) 

  – surface Laplacian  
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  – surface divergence  
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⎠

⎞
⎜⎜
⎝

⎛
∂
∂+

∂
∂= 21

2
12

121

1div Vh
s

Vh
shh

V . (A11) 

References 
  [1] Leontovich M.A., On the approximate boundary conditions for the electromagnetic field on the 

surface of well conducting bodies, Investigations of Radio Waves, Academy of Sciences of USSR, 
Moscow (1948). 

  [2] Senior T.B.A., Volakis J.L., Approximate Boundary Conditions in Electromagnetics, The Institu-
tion of Electrical Engineers, London (1995).  

  [3] Yuferev S., Ida N., Surface Impedance Boundary Conditions. A comprehensive approach, CRC 
Press (2010). 

Brought to you by | Uniwersytetu Technologicznego w Szczecinie - Biblioteka Glówna Zachodniopomorskiego
Authenticated

Download Date | 6/13/17 3:58 PM



                                                                     S. Pawłowski, J. Plewako                                        Arch. Elect. Eng. 446

  [4] Kaźmierski M., Pawłowski S., Practical application of integral equations for calculation of trans-
former leakage field, Archives of Electrical Engineering, vol. 45, no. 3, pp. 251-261 (1996). 

  [5] Lin L., Xiang C., Losses Calculation in Transformer Tie Plate Using the Finite Element Method, 
IEEE Transactions on Magnetics, vol. 34, no. 5 (1998).  

  [6] Higuchi Y., Koizumi M., Integral Equation Method with Surface Impedance Model for 3D Eddy 
Current Analysis in Transformers, IEEE Transactions on Magnetics, vol. 36, no. 4 (2000). 

  [7] Pawłowski S., Analysis of Leakage Field in Power Transformers with Use of Boundary-Iterative 
Method, WSEAS Transactions on Circuits and Systems, vol. 11, no. 4, pp. 1620-1627 (2005).  

  [8] Apanasewicz S., Pawłowski S., Plewako J., Application of an iterative method of fundamental solu-
tions for the analysis of quasi-stationary electromagnetic field in the presence of non-linear mag-
netic bodies, Przeglad Elektrotechniczny (in Polish), vol. 89, no. 11, pp. 304-308 (2013). 

  [9] Apanasewicz S., Pawłowski S., Plewako J., Analysis for quasi-stationary electromagnetic field with 
ferromagnetic objects present within, Przeglad Elektrotechniczny, vol. 89, no. 12, pp. 169-173 
(2013).  

[10] Pawłowski S., Plewako J., The matrix method of calculating the parameters of multilayer electro-
magnetic screens, Przeglad Elektrotechniczny, vol. 91, no. 12, pp. 185-188 (2015). 

[11] Pawłowski S., Plewako J., Analysis of nonlinear problems in electrodynamics by means of surface 
impedance boundary conditions (SIBC) combined with transfer matrix method, in IEEE Selected 
Issues of Electr. Engineering and Electronics (WZEE) (2016), DOI: 10.1109/WZEE.2016.7800192. 

[12] Zakrzewski K., Determination of electromagnetic field in solid iron with application of digital me-
thod, Archives of Electrical Engineering, vol. 18, no. 3, pp. 569-585 (1969). 

[13] Zakrzewski K., Berechnung der Wirk- und Blindleistung in einem ferromagnetischen Blech unter 
Berücksichtigung der komplexen magnetischen Permeabilität, Wiss. Z. TH Ilmenau, vol. 5, no. 16, 
pp. 101-105 (1970).  

[14] Zakrzewski K., Kuśmierek Z., Analytic sensitiveness of power losses in electrical steels on an 
accuracy of determination of the elliptic hysteresis angle, Przeglad Elektrotechniczny (in Polish), 
vol. 2, no. 80, pp. 96-99 (2004).  

[15] Trajdos T., Engineers Handbook. Mathematics (in Polish), PWN Warszawa (1986).  
 

Brought to you by | Uniwersytetu Technologicznego w Szczecinie - Biblioteka Glówna Zachodniopomorskiego
Authenticated

Download Date | 6/13/17 3:58 PM


