Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The present study explores the characteristics of reacting flow in a scramjet combustor with struts, focusing particularly on implementing different injection strategies. A three-dimensional DLR scramjet combustor is utilised to assess the impact on the system, incorporating multiple injections and varying injection angles on the triangular wedge. The analysis considers three injectors with parallel, upward and downward injections at angles of 15° and 30°. The numerical investigation is conducted under a constant total pressure of 7.82 bar, a temperature of 340 K, and an airspeed of Mach 2 at the inlet. The results highlight the significance of injector location and shape in promoting flame stabilization. Furthermore, injection angles play a crucial role in mitigating shockwave intensity. The numerical analysis involves a steady-state Reynolds-averaged Navier-Stokes equation with the shear stress transport k-ω turbulence model. The obtained results were analyzed by examining the critical variables such as Mach number, static pressure and combustion efficiency across the combustor. Based on the computational results, injecting fuel upward not only increases the overall pressure loss but also enhances the subsonic regime downstream of the strut, which leads to better mixing and combustion efficiencies. This is primarily due to shockwave generation from the edges of the strut and the interactions with the fuel stream shear layers.
Czasopismo
Rocznik
Tom
Strony
167--178
Opis fizyczny
Bibliogr. 56 poz., rys.
Twórcy
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamilnadu- 632014, India
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamilnadu- 632014, India
Bibliografia
- [1] Curran, E.T. (2001). Scramjet engines: The first forty years. Journal of Propulsion and Power, 17(6), 1138–1148. doi:10.2514/2.5875
- [2] Das, N., Pandey, K.M., & Sharma, K.K. (2020). A brief review on the recent advancement in the field of jet engine - scramjet engine. In Materials Today: Proceedings, pp. 6857–6863. Elsevier Ltd. doi: 10.1016/j.matpr.2020.12.1035
- [3] Choubey, G., Pandey, K.M., Maji, A., & Deshamukhya, T. (2017). A brief review on the recent advances in scramjet engine. In AIP Conference Proceedings, American Institute of Physics Inc. doi: 10.1063/1.4990189
- [4] Fry, R.S. (2004). A Century of Ramjet Propulsion Technology Evolution. Journal of Propulsion and Power, 20(1), 27–58. doi:10.2514/1.9178
- [5] Barzegar Gerdroodbary, M., Ganji, D.D., & Amini, Y. (2015). Numerical study of shock wave interaction on transverse jets through multiport injector arrays in supersonic crossflow. Acta Astronautica, 115, 422–433. doi: 10.1016/j.actaastro.2015.06.002
- [6] Yan, L., Wu, H., Huang, W., bin Li, S., & Liu, J. (2020). Shock wave/turbulence boundary layer interaction control with the secondary recirculation jet in a supersonic flow. Acta Astronautica, 173, 131–138. doi: 10.1016/j.actaastro.2020.04.003
- [7] Huang, W., Tan, J.G., Liu, J., & Yan, L. (2015). Mixing augmentation induced by the interaction between the oblique shock wave and a sonic hydrogen jet in supersonic flows. Acta Astronautica, 117, 142–152. doi: 10.1016/j.actaastro.2015.08.004
- [8] Ben-Yakar, A., & Hanson, R.K. (2001). Cavity Flame-Holders for Ignition and Flame Stabilization in Scramjets: An Overview. Journal of Propulsion and Power, 17 (4), 869–877. doi: 10.2514/2.5818
- [9] Qiuru, Z., Huanli, Y., & Jian, D. (2021). Effects of cavity-induced mixing enhancement under oblique shock wave interference: numerical study. International Journal of Hydrogen Energy,46(72), 35706–35717.
- [10] Dhankarghare, A.A., Jayachandran, T., & Muruganandam, T.M. (2022). Comparative investigation of strut cavity and wall cavity in supersonic flows. Aerospace Science and Technology, 124, 107520. doi: https://doi.org/10.1016/j.ast.2022.107520
- [11] Edalatpour, A., Hassanvand, A., Gerdroodbary, M.B., Moradi, R., & Amini, Y. (2019). Injection of multi hydrogen jets within cavity flameholder at supersonic flow. International Journal of Hydrogen Energy, 44(26), 13923–13931. doi: 10.1016/j.ijhydene.2019.03.117
- [12] Cai, Z., Wang, T., & Sun, M. (2019). Review of cavity ignition in supersonic flows. Acta Astronautica., 165, 268–286. doi:10.1016/j.actaastro.2019.09.016
- [13] He, Q., Li, J., Wen, W., Ding, Y., Li, J., & Peng, C. (2023). Experimental determination and modeling of density, viscosity, and surface tension for sulfolane + ethyl acetate and + n-propyl acetate. Journal of Chemical and Engineering Data, 68(4), 793–804. doi: 10.1021/acs.jced.2c00706
- [14] Liu, C., Zhang, J., Jia, D., & Li, P. (2022). Experimental and numerical investigation of the transition progress of strut-induced wakes in the supersonic flows. Aerospace Science and Technology. 120, 107256. doi: 10.1016/j.ast.2021.107256
- [15] An, B., Sun, M., Wang, Z., & Chen, J. (2020). Flame stabilization enhancement in a strut-based supersonic combustor by shock wave generators. Aerospace Science and Technology. 104,105942. doi: 10.1016/j.ast.2020.105942
- [16] Wu, K., Zhang, P., Yao, W., & Fan, X. (2019). Computational realization of multiple flame stabilization modes in DLR strutinjection hydrogen supersonic combustor. Proceedings of the Combustion Institute. International Symposium on Combustion,37(3), 3685–3692. doi: 10.1016/j.proci.2018.07.097
- [17] Lakka, S., Randive, P., & Pandey, K.M. (2021). Implication of geometrical configuration of cavity on combustion performance in a strut-based scramjet combustor. Acta Astronautica, 178,793–804. doi: 10.1016/j.actaastro.2020.08.040.
- [18] Dinde, P., Rajasekaran, A., & Babu, V. (2006). 3D numerical simulation of the supersonic combustion of H2. The Aeronautical Journal, 110(1114), 773–782. doi: 10.1017/S0001924000001640
- [19] Liu, Y., Sun, M., Liang, C., Yu, J., & Li, G. (2019). Flowfield structures of pylon-aided fuel injection into a supersonic crossflow. Acta Astronautica, 162, 306–313. doi: 10.1016/j.actaastro.2019.06.022
- [20] Oamjee, A., & Sadanandan, R. (2019). Fuel injection location studies on pylon-cavity aided jet in supersonic crossflow. Aerospace Science and Technology, 92, 869–880. doi: 10.1016/j.ast.2019.07.021
- [21] Li, Z., Barzegar Gerdroodbary, M., Sheikholeslami, M., Shafee, A., Babazadeh, H., & Moradi, R. (2020). Mixing enhancement of multi hydrogen jets through the cavity flameholder with extendedpylon. Acta Astronautica, 175, 300–307. doi: 10.1016/j.actaastro.2020.06.002
- [22] Sekar, A., Chakraborty, M., & Vaidyanathan, A. (2022). Mixing characteristics of liquid jet injected behind a curved pylon in supersonic flow. Experimental Thermal and Fluid Science, 134,110570. doi: 10.1016/j.expthermflusci.2021.110570
- [23] Zhang, L., Sheng, Z., & Dan, Y. (2023). Effects of sawtooth grooves on supersonic combustion. Aerospace Science and Technology, 136, 108223. doi: 10.1016/j.ast.2023.108223
- [24] Du, Z., Huang, W., Yan, L., Chen, Z., & Moradi, R. (2019). Mixing augmentation mechanism induced by the dual injection concept in shcramjet engines. Acta Astronautica, 156, 1–13. doi:10.1016/j.actaastro.2018.11.019
- [25] Barzegar Gerdroodbary, M., Jahanian, O., & Mokhtari, M. (2015). Influence of the angle of incident shock wave on mixing of transverse hydrogen micro-jets in supersonic crossflow. International Journal of Hydrogen Energy, 40(30), 9590–9601.doi: 10.1016/j.ijhydene.2015.04.107
- [26] Zuo, Q., Yu, H., Dai, J., Yan, Y., & Chen, L. (2022). Numerical study of injection strategy based on cavity combustor under oblique shock wave interference. International Journal of Hydrogen Energy, 47(86), 36693–36702. doi: 10.1016/j.ijhydene.2022.08.225
- [27] Zhang, Y., Wang, B., Zhang, H., & Xue, S. (2015). Mixing Enhancement of Compressible Planar Mixing Layer Impinged by Oblique Shock Waves. Journal of Propulsion and Power, 31(1), 156–169. doi: 10.2514/1.B35423
- [28] Peng, Y., Barzegar Gerdroodbary, M., Sheikholeslami, M., Shafee, A., Babazadeh, H., & Moradi, R. (2020). Mixing enhancement of the multi hydrogen fuel jets by the backward step. Energy, 203, 117859. doi: 10.1016/j.energy.2020.117859
- [29] Li, Z., Manh, T.D., Barzegar Gerdroodbary, M., Nam, N.D., Moradi, R., & Babazadeh, H. (2020). The influence of the wedge shock generator on the vortex structure within the trapezoidal cavity at supersonic flow. Aerospace Science and Technology, 98(5), 105695. doi: 10.1016/j.ast.2020.105695
- [30] Gruber, M.R., Baurle, R., Mathur, T., & Hsu, K.-Y. (2001). Fundamental Studies of Cavity-Based Flameholder Concepts for Supersonic Combustors. Journal of Propulsion and Power,17(1), 146–153. doi: 10.2514/2.5720
- [31] Li, Z., Manh, T.D., Barzegar Gerdroodbary, M., Nam, N.D., Moradi, R., & Babazadeh, H. (2020). Computational investigation of multi-cavity fuel injection on hydrogen mixing at supersonic combustion chamber. International Journal of Hydrogen Energy, 45(15), 9077–9087. doi: 10.1016/j.ijhydene.2020.01.096
- [32] Jeyakumar, S., Balachandran, P., Indira, S., & Thillai Arasu, P.(2006). Studies on combustion in supersonic flows. Asian Journal of Chemistry, 18(4), 2557–2561.
- [33] Jeyakumar, S., Venkateshwaran, V., Surjith, N., Karkuvel Raja, A., & Samy, G.S. (2017). Experimental Investigations on Aft Ramp Cavities with Fore Wall Modifications in Scramjet Combustors BT. Fluid Mechanics and Fluid Power – Contemporary Research. (pp. 1203–1212), New Delhi, Springer India.
- [34] Jeyakumar, S., Balachandran, P., & Indira, S. (2006). Experimental Investigations on Supersonic Stream Past Axisymmetric Cavities. Journal of Propulsion and Power, 22(5),1141–1144. doi: 10.2514/1.21024
- [35] Jeyakumar S., & Jayaraman, K. (2018). Effect of finite width cavity in axisymmetric supersonic flow field. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 232(1), 180–184. doi: 10.1177/0954410016674036
- [36] Assis, S.M., Jeyakumar S., & Jayaraman, K. (2019). The Effect of Transverse Injection Upstream of an Axisymmetric Aft Wall Angled Cavity in a Supersonic Flow Field. Journal of Physics: Conference Series, 1276. International Conference on Recent Advances in Fluid and Thermal Sciences, 5–7 December 2018, Dubai, U.A.E. doi: 10.1088/1742-6596/1276/1/012019
- [37] Kannaiyan, K. (2020). Computational study of the effect of cavity geometry on the supersonic mixing and combustion of ethylene. Journal of Computational Science, 47. doi: 10.1016/j.jocs.2020.101243
- [38] Liu, X., Barzegar Gerdroodbary, M., Sheikholeslami, M., Moradi, R., Shafee, A., & Li, Z. (2020). Effect of strut angle on performance of hydrogen multi-jets inside the cavity at combustion chamber. International Journal of Hydrogen Energy, 45(55), 31179–31187. doi: 10.1016/j.ijhydene.2020.08.124
- [39] Feng, Y., Luo, S., Song, J., Xia, K., & Xu, D. (2023). Numerical investigation on the combustion characteristics of aluminum powder fuel in a supersonic cavity-based combustor. Applied Thermal Engineering, 221, 119842. doi: 10.1016/j.applthermaleng.2022.119842
- [40] Qiu, H., Zhang, J., Gao, J., Chang, J., &. Bao, W. (2021). Research on combustion performance optimization in scramjet combustor with strut/wall combined fuel injection scheme. Aerospace Science and Technology, 109, 106376. doi: 10.1016/j.ast.2020.106376
- [41] Rajesh, A.C., Jeyakumar, S., Jayaraman, K., & Karaca, M. (2023). Steady and unsteady flow characteristics of dual cavity in strut injection scramjet combustor. International Journal of Hydrogen Energy, 48(72), 28174–28186. doi: 10.1016/j.ijhydene.2023.04.017
- [42] Rajesh, A.C., Jeyakumar, S., Jayaraman, K., Karaca, M., & Athithan, A.A. (2023). The implications of dual cavity location in a strut-mounted scramjet combustor. International Communications in Heat and Mass Transfer, 145, part B,106855. doi: 10.1016/j.icheatmasstransfer.2023.106855.A
- [43] Athithan, A., Jeyakumar, S., & Poddar, S. (2021). Influence of wall mounted ramps on DLR strut scramjet combustor under nonreacting flow field. Materials Today: Proceedings, 56(5),3002−doi: 10.1016/j.matpr.2021.11.347
- [44] Jeyakumar, S., Kandasamy, J., Karaca, M., Karthik, K., & Sivakumar, R. (2021). Effect of hydrogen jets in supersonic mixing using strut injection schemes. International Journal of Hydrogen Energy, 46(44), 23013–23025. doi: 10.1016/j.ijhydene.2021.04.123
- [45] Qiu, H., Lin, L., Zhang, J., Zhang, S., & Bao, W. (2023). Influence of multi-strut interaction on flame propagation and combustion performance in a large aspect ratio combustor. Aerospace Science and Technology, 137. doi: 10.1016/j.ast.2023.108193
- [46] Kummitha, O.R., Pandey, K.M., & Padidam, A.K.R. (2021). Effect of a revolved wedge strut induced mixing enhancement for a hydrogen fueled scramjet combustor. International Journal of Hydrogen Energy, 46(24), 13340–13352. doi: 10.1016/j.ijhydene.2021.01.089
- [47] Oevermann, M. (2000). Numerical investigation of turbulent hydrogen combustion in a SCRAMJET using flamelet modeling. Aerospace Science and Technology, 4(7), 463–480. doi:10.1016/S1270-9638(00)01070-1
- [48] Menter, F.R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598–1605. doi: 10.2514/3.12149
- [49] Li, C., Chen, X., Li, Y., Musa, O., Zhu, L., & Li, W. (2019). Role of the backward-facing steps at two struts on mixing and combustion characteristics in a typical strut-based scramjet with hydrogen fuel. International Journal of Hydrogen Energy, 44(52). 28371–28387. doi: 10.1016/j.ijhydene.2019.09.023
- [50] Aravind S., & Kumar, R. (2019). Supersonic combustion of hydrogen using an improved strut injection scheme. International Journal of Hydrogen Energy, 44(12), 6257–6270. doi: 10.1016/j.ijhydene.2019.01.064
- [51] Choubey G., & Pandey, K.M. (2018). Effect of variation of inlet boundary conditions on the combustion flow-field of a typical double cavity scramjet combustor. International Journal of Hydrogen Energy, 43(16), 8139–8151. doi: 10.1016/j.ijhydene.2018.03.062
- [52] Yarasai, S.S., Ravi, D., & Yoganand, S. (2022). ScienceDirect Numerical investigation on the performance and combustion characteristics of a cavity based scramjet combustor with novel strut injectors. International Journal of Hydrogen Energy,48(14), 5681–5695. doi: 10.1016/j.ijhydene.2022.11.150
- [53] Tu, J., Yeoh, G.H., Liu, C., & Tao, Y. (2023). Computational fluid dynamics: a practical approach. Elsevier.
- [54] Kassem, H.I., Saqr, K.M., Aly, H.S., Sies, M.M., & Wahid, M.A. (2011). Implementation of the eddy dissipation model of turbulent non-premixed combustion in OpenFOAM. International Communications in Heat and Mass Transfer, 38(3), 363–367. doi: 10.1016/j.icheatmasstransfer.2010.12.012
- [55] Kumaran K., & Babu, V. (2009). Investigation of the effect of chemistry models on the numerical predictions of the supersonic combustion of hydrogen. Combustion and Flame, 156(4), 826–841. doi: 10.1016/j.combustflame.2009.01.008
- [56] Gerlinger, P., Stoll, P., Kindler, M., Schneider, F., & Aigner, M. (2008). Numerical investigation of mixing and combustion enhancement in supersonic combustors by strut induced streamwise vorticity. Aerospace Science and Technology, 12(2),159–168. doi: 10.1016/j.ast.2007.04.003
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-557f3af5-7d9a-4f08-9bd9-d4d0aefc906a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.