PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Digital control system design for bearingless permanent magnet synchronous motors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates a digital control system which is used in bearingless permanent magnet synchronous motors (BPMSMs). Compared with traditional permanent magnet synchronous motors, a BPMSM is characterized by higher speed and no mechanic friction. Therefore, the application value of the latter to the special area is higher than that of the former. An analysis from previous work on the BPMSM had proved its feasibility, and some performances such as suspension force, inductance and so on were also investigated. Based on this analysis, this study focuses on solving control problems in practical applications by designing a control system. The control system design includes overall schematic, hardware and software designs. Main software systems, including the force/current transform module and closed loop control module for radial displacement, are analyzed. Interface circuit for radial displacement, current feedback circuit and dead zone protection circuit are designed for the hardware system. Finally, several performance experiments have been conducted to verify the effectiveness of the designed digital control system. Experiment results indicate that the rotor has unique characteristics, such as stable suspension performance, good start-of-suspension performance, and rapid anti-disturbance features.
Rocznik
Strony
687--698
Opis fizyczny
Bibliogr. 32 poz., rys., wykr.
Twórcy
autor
  • xdsun@ujs.edu.cn
  • School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang, 212013, China
  • Automotive Engineering Research Institute, Jiangsu University, Zhenjiang, 212013, China
autor
  • 1School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang, 212013, China
autor
  • School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, 212013, China
autor
  • School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang, 212013, China
  • Automotive Engineering Research Institute, Jiangsu University, Zhenjiang, 212013, China
autor
  • 1School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang, 212013, China
autor
  • Automotive Engineering Research Institute, Jiangsu University, Zhenjiang, 212013, China
autor
  • School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, 212013, China
Bibliografia
  • [1] K. Urbanski, “A new sensorless speed control structure for PMSM using reference model”, Bull. Pol. Ac.: Tech. 65(4), 489‒496 (2017).
  • [2] X. Sun, B. Su, L. Chen, Z. Yang, and K. Li, “Design and analysis of interior composite-rotor bearingless permanent magnet synchronous motors with two layer permanent magnets”, Bull. Pol. Ac.: Tech. 65(6), 833‒843 (2017).
  • [3] G. Lei, C. Liu, J. Zhu, and Y. Guo, “Multidisciplinary design analysis and optimization of a PM transverse flux machine with soft magnetic composite core,” IEEE Transactions on Magnetics 51(11), 8109704 (2015).
  • [4] G. Lei, C. Liu, J. Zhu, and Y. Guo, “Robust multidisciplinary design optimization of PM machines with soft magnetic composite cores for batch production,” IEEE Transactions on Magnetics 52(3), 8101304(2016).
  • [5] X. Sun, B. Su, L. Chen, Z. Yang, X. Xu, and Z. Shi, “Precise control of a four degree-of-freedom permanent magnet biased active magnetic bearing system in a magnetically suspended direct-driven spindle using neural network inverse scheme”. Mechanical Systems and Signal Processing 88, 36‒48 (2017).
  • [6] X. Sun, Z. Shi, L. Chen, and Z. Yang, “Internal model control for a bearingless permanent magnet synchronous motor based on inverse system method”, IEEE Transactions on Energy Conversion 31(4), 1539‒1548(2016).
  • [7] B. Su, X. Sun, L. Chen, Z. Yang, and K. Li, “Thermal modeling and analysis of bearingless permanent magnet synchronous motors”, International Journal of Applied Electromagnetics and Mechanics 56(1), 115‒130 (2018).
  • [8] K. Raggl, B. Warberger, T. Nussbaumer, S. Burger and J.W. Kolar, “Robust angle-sensorless control of a PMSM bearingless pump”, International Journal of Applied Electromagnetics and Mechanics 51, 151‒159(2016).
  • [9] A. Chiba, D. Akamatsu, T. Fukao, and M.A. Rahman,“An improved rotor resistance identification method for magnetic field regulation in bearingless induction motor drives”, IEEE Transactions on Industrial Electronics 55(2), 852‒860(2008).
  • [10] T.M. Bartholet, T. Nussbaumer, and J. W. Kolar, “Comparison of Voltage-Source Inverter Topologies for Two-Phase Bearingless Slice Motors”, IEEE Transactions on Industrial Electronics 58(5), 1921‒1925(2011).
  • [11] W.S. Han, C. W. Lee, and Y. Okada, “Design and control of a disk-type integrated motor-bearing system”, IEEE/ASME Transactions on Mechatronics 7(1), 1083‒4435 (2002).
  • [12] W. Bu, C. Zu, S. Wang, and S. Huang, “Digital control system design and analyses of a 3-phase bearingless induction motor”, Turkish Journal Of Electrical Engineering & Computer Sciences 22, 1193‒1209(2014).
  • [13] M. Janaszek, “Structures of vector control of n-phase motor drives based on generalized Clarke transformation”, Bull. Pol. Ac.: Tech. 64 (4), 865‒872 (2016).
  • [14] J. Yang, M. Dou, and D. Zhao, “Iterative sliding mode observer for sensorless control of five-phase permanent magnet synchronous motor”, Bull. Pol. Ac.: Tech. 65 (6), 845‒857 (2017).
  • [15] K. Urbanski, “A new sensorless speed control structure for PMSM using reference model”, Bull. Pol. Ac.: Tech. 65 (4), 489‒496 (2017).
  • [16] H. Makino, T. Kosaka, and N. Matsui, “Digital PWM-Control-Based Active Vibration Cancellation for Switched Reluctance Motors”, IEEE Transactions on Industry Applications 51(6), 4521‒4530(2015).
  • [17] C.S. Joice, S.R. Paranjothi, and V.J.S. Kumar, “Digital Control Strategy for Four Quadrant Operation of Three Phase BLDC Motor With Load Variations”, IEEE Transactions on Industrial Informatics 9(2), 974‒982(2013).
  • [18] Z. Zeng, C. Zhu, X. Jin, W. Shi, and R. Zhao, “Hybrid Space Vector Modulation Strategy for Torque Ripple Minimization in Three-Phase Four-Switch Inverter-Fed PMSM Drives”, IEEE Transactions on Industrial Electronics 64(3), 2122‒2134(2017).
  • [19] P. Bogusz, “A switched reluctance motor control method limiting the maximum dc source current in the low-speed range”, Bull. Pol. Ac.: Tech. 64(1), 197‒206(2016).
  • [20] G. Lei, J.G. Zhu, Y.G. Guo, K.R. Shao, and W. Xu, “Multi-objective sequential design optimization of PM-SMC motors for Six Sigma quality manufacturing,” IEEE Transactions on Magnetics 50(2), 7017704(2014).
  • [21] X. Sun, B. Su, L. Chen, Z. Yang, J. Chen, and W. Zhang, “Nonlinear flux linkage modeling of a bearingless permanent magnet synchronous motor based on AW-LSSVM regression algorithm”, International Journal of Applied Electromagnetics and Mechanics 51(2), 151‒159(2016).
  • [22] X. Sun, L. Chen, H. Jiang, Z. Yang, J. Chen, and W. Zhang, “High-performance control for a bearingless permanent magnet synchronous motor using neural network inverse scheme plus internal model controllers”, IEEE Transactions on Industrial Electronics 63(6), 3479‒3488(2016).
  • [23] K. Raggl, B. Warberger, and T. Nussbaumer, “Robust angle-sensorless control of a PMSM bearingless pump”, IEEE Transactions on Industrial Electronics 56(6), 2076‒2085(2009).
  • [24] S. Zhang and F. Luo, “Direct control of radial displacement for bearingless permanent-magnet-type synchronous motors”, IEEE Transactions on Industrial Electronics 56(2), 542‒552(2009).
  • [25] X. Sun, Z. Xue, J. Zhu, Y. Guo, Z. Yang, L. Chen, and J. Chen, “Suspension Force Modeling for a Bearingless Permanent Magnet Synchronous Motor Using Maxwell Stress Tensor Method”, IEEE Transactions on Applied Superconductivity 26(7), 1‒5(2016).
  • [26] W. Jendernalik, “On analog comparators for CMOS digital pixel applications. A comparative study”, Bull. Pol. Ac.: Tech. 64(2), 271‒278 (2016).
  • [27] X. Yue, H. Pan, S.Z. He, and L. Li, “Monolithic H-bridge brushless DC vibration motor driver with a highly sensitive Hall sensor in 0.18 μm complementary metal-oxide semiconductor technology”, IET Circuits Devices & Systems 7(4), 204‒210(2013).
  • [28] Z. Gosiewski and A. Mystkowski, “Robust control of active magnetic suspension: Analytical and experimental results”, Mechanical Systems and Signal Processing 22(6), 1297‒1303(2008).
  • [29] A. Samar, P. Saedin, A.I. Tajudin, and N. Adni, “The Implementation of Field Oriented Control for PMSM Drive Based on TMS320F2808 DSP Controller”, 2012 IEEE International Conference on Control System, Computing and Engineering 612‒616(2012).
  • [30] X. Sun, L. Chen, and Z. Yang, “Overview of Bearingless Permanent- Magnet Synchronous Motors”, IEEE Transactions on Industrial Electronics 60(12), 5528‒5538(2013).
  • [31] X. Sun, L. Chen, Z. Yang, and H. Zhu, “Speed-sensorless vector control of a bearingless induction motor with artificial neural network inverse speed observer”, IEEE/ASME Transactions on Mechatronics 18(4), 1357‒1366(2013).
  • [32] X. Sun, Y. Shen, Z. Zhou, Z. Yang, and L. Chen, “Modeling and control of a bearingless permanent magnet synchronous motor”, International Journal of Applied Electromagnetics and Mechanics 53(1), 151‒165 (2017).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-55779e53-6683-4a85-b8c6-3f74d912dc70
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.