Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we establish a result concerning the controllability of a mixed Volterra–Fredholm type integrodifferential third order dispersion equation. The result is obtained by using the theory of strongly continuous semigroups and the Banach fixed point theorem.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1--7
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
- Department of Mathematics, Indian Institute of Technology, Roorkee-247667, Uttarakhand, India
autor
- Department of Mathematics, Indian Institute of Technology, Roorkee-247667, Uttarakhand, India
Bibliografia
- [1] K. Balachandran and E. R. Anandhi, Boundary controllability of integrodifferential systems in Banach spaces, Proc. Indian Acad. Sci. Math. Sci 111 (2001), no. 1, 127–135.
- [2] K. Balachandran and R. Sakthivel, Controllability of functional semilinear integrodifferential systems in Banach spaces, J. Math. Anal. Appl. 255 (2001), no. 2, 447–457.
- [3] D. N. Chalishajar, Controllability of mixed Volterra–Fredholm type integro-differential systems in Banach space, J. Franklin Inst. 344 (2007), no. 1, 12–21.
- [4] D. N. Chalishajar, Controllability of nonlinear integro-differential third order dispersion system, J. Math. Anal. Appl. 348 (2008), no. 1, 480–486.
- [5] R. K. George, D. N. Chalishajar and A. K. Nandakumaran, Exact controllability of the third order nonlinear dispersion equation, J. Math. Anal. Appl. 332 (2007), no. 2, 1028–1044.
- [6] N. Kkelil, N. N. Bensalah and A. Zerarka, Artifcial perturbation for solving the Korteweg–de Vries equation, J. Zhejiang Univ. Sci. A 7 (2006), no. 12, 2079–2082.
- [7] D. J. Korteweg and G. de. Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Phil. Mag. 39 (1895), 422–443.
- [8] B. G. Pachpatte, On mixed Volterra–Fredholm type integral equations, Indian J. Pure Appl. Math. 17 (1986), 488–496.
- [9] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci. 44, Springer, New York, 1983.
- [10] M. D. Quinn and N. Carmichael, An approach to non-linear control problems using fixed-point methods, degree theory and pseudo-inverses, Numer. Funct. Anal. Optim. 7 (1984), 197–219.
- [11] L. Rosier, Exact boundary controllability for the Korteweg–de Vries equation on a bounded domain, ESAIM Control Optim. Calc. Var. 2 (1997), 33–55.
- [12] L. Rosier, Exact boundary controllability for the linear Korteweg–de Vries equation on the half line, SIAM J. Control Optim. 39 (2000), no. 2, 331–351.
- [13] D. L. Russell and B. Y. Zhang, Controllability and stabilizability of the third-order linear dispersion equation on a periodic domain, SIAM J. Control Optim. 31 (1993), no. 3, 659–676.
- [14] D. L. Russell and B. Y. Zhang, Exact controllability and stabilizability of the Korteweg–de Vries equation, Trans. Amer. Math. Soc. 348 (1996), no. 9, 3643–3672.
- [15] L. Yushu, Time jitters caused by third-order dispersion in soliton transmission system, Int. J. Infrared Millim. Waves 20 (1999), 1541–1548.
- [16] B.-Y. Zhang, Exact boundary controllability for the Korteweg–de Vries equation, SIAM J. Control Optim. 37 (1999), no. 2, 543–565.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-55765cb7-5b3c-47c8-9463-72db28b0af1c