PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of Fiber-Optic Sensors System, Based on Fiber Bragg Gratings

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An article herein considers the development of a fiber-optic sensor system, based on fiber Bragg gratings. Presently, fiber-optic sensors has become world-widely known amongst sensor technologies, used for monitoring engineering and construction structures. The work is linked with developing the system from fiber-optic sensors on the basis of fiber optic gratings, its characteristics, deformation behavior and temperature, acting at fiber Bragg grating by means of computer modeling. The research is focused at the analysis of characteristics and deformation and temperature behavior of fiber-optic Bragg sensor. Fiber-optic Bragg sensor with tilted grating is used for measuring deformation of the object, the strength of which is changed, dependent on the applied force, as well, for measuring and detecting any temperature deviations, influencing at fiber Bragg grating, which might bring to fire and accidents. In the research, simulation modeling there was made in the MATLAB (Simulink) software.
Słowa kluczowe
Rocznik
Strony
98--106
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
  • Institute of Information and Computational Technologies, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, Almaty, 50040, Kazakhstan
  • Institute of Information and Computational Technologies, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, Almaty, 50040, Kazakhstan
  • Lublin University of Technologies, ul. Nadbystrzycka 40, 20-618 Lublin, Poland
  • Institute of Information and Computational Technologies, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, Almaty, 50040, Kazakhstan
  • Institute of Information and Computational Technologies, Academic of Logistic and Transport, Shevchenko St., 97, Almaty, Kazakhstan
  • Institute of Information and Computational Technologies, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, Almaty, 50040, Kazakhstan
Bibliografia
  • 1. Takeda N., Okabe Y., Kuwahara J., et al. 2005. Development of smart composite structures with small-diameter fiber Bragg grating sensors for damage detection: Quantitative evaluation of delamination length in CFRP laminates using Lamb wave sensing. Compos Sci Technol, 65, 2575–2587.
  • 2. Takeda S., Tsukada T., Sugimoto S., et al. 2014. Monitoring of water absorption in CFRP laminates using embedded fiber Bragg grating sensors. Compos Part A Appl Sci Manuf, 61, 163–171.
  • 3. Boateng E., Schubel P., Umer R. 2019. Thermal isolation of FBG optical fibre sensors for composite cure monitoring. Sensors and Actuators A, 287, 158–167.
  • 4. Minakuchi S., Takeda N. 2013. Recent advancement in optical fiber sensing for aerospace composite structures. Photonic Sens, 3(4), 345–354.
  • 5. Takagaki K., Hisada S., Minakuchi S., Takeda N. 2017.Process improvement for out-of- autoclave prepreg curing supported by in-situ strain monitoring. J Compos Mater, 51(9), 1225–1237.
  • 6. Her S.-C., Huang C.-Y. 2013. Thermal strain analysis of optic fiber sensors. Sensors, 13, 1846–1855.
  • 7. Umer R., Waggy E.M., Haq M., Loos A.C. 2012. Experimental and numerical characterizations of flexural behavior of VARTM-infused composite sandwich structures. J Reinf Plast Compos, 31(2), 67–76.
  • 8. Moriche R., Sánchez M., Jiménez-Suárez A., Prolongo S.G., Ureña A. 2016. Strain monitoring mechanisms of sensors based on the addition of graphene nanoplatelets into an epoxy matrix. Compos Sci Technol, 123 (Suppl. C), 65–70.
  • 9. Böger L., Wichmann M.H.G, Meyer L.O., Schulte K. 2008. Load and health monitoring in glass fibre reinforced composites with an electrically conductive nanocomposite epoxy matrix. Compos Sci Technol, 68(7), 1886–1894.
  • 10. Giri A., Pandey C., Mahapatra M.M., Sharma K., Singh P.K. 2015. On the estimation of error in measuring the residual stress by strain gauge rosette. Measurement, 65, 41–92.
  • 11. Chiang C.-C. 2011.Curing monitoring of composite material using embedded fiber Bragg grating sensors. In: Těšinova P (Ed.) Advances in composite materials – analysis of natural and man-made materials, In Tech, 345–360.
  • 12. Antonucci V., et al. 2006. Real time monitoring of cure and gelification of a thermoset matrix. Compos Sci Technol, 66(16), 3273–3280.
  • 13. Murukeshan V.M., et al. 2000.Cure monitoring of smart composites using Fiber Bragg Grating based embedded sensors. Sens Actuators A, 79(2), 153–161.
  • 14. Grattan K.T.V., Sun D.T. 2000.Fiber optic sensor technology: an overview. Sens Actuators, 82(1–3), 40–61.
  • 15. Hill K.O., Meltz G. 1997. Fiber Bragg grating technology fundamentals and overview. J Lightwave Technol, 15(8), 1263–1276.
  • 16. Mahendran R.S., et al. 2009. Fiber-optic sensor design for chemical process and environmental monitoring. Opt Lasers Eng, 47(10), 1069–1076.
  • 17. Koissin V., Demčenko A., Korneev V.A. 2014. Isothermal epoxy-cure monitoring using nonlinear ultrasonics. Int J Adhesion Adhesiv, 52(Suppl. C), 11–18.
  • 18. Minakuchi S., Niwa S., Takagaki K., Takeda N. 2016. Composite cure simulation scheme fully integrating internal strain measurement. Compos A Appl Sci Manuf, 84, 53–63.
  • 19. Anil Kumar A., Sundaram R. 2016.Cure cycle optimization for the resin infusion technique using carbon nanotube additives. Carbon, 96 (Suppl. C), 1043–1052.
  • 20. Hu H., Li S., Wang J., Zu L., Cao D., Zhong Y. 2017. Monitoring the gelation and effective chemical shrinkage of composite curing process with a novel FBG approach. Compos Struct, 176 (Suppl. C), 187–194.
  • 21. Umer R., Li Y., Dong Y., Haroosh H.J., Liao K. 2015. The effect of graphene oxide (GO) nanoparticles on the processing of epoxy/glass fiber composites using resin infusion. Int J Adv Manuf Technol, 81(9), 2183–2192.
  • 22. Gagné M., Loranger S., Lapointe J., Kashyap R. 2014. Fabrication of high quality, ultra-long fiber Bragg gratings: up to 2 million periods in phase. Opt. Exp, 22, 387–398.
  • 23. De Lima Filho E.S., Diaa Baiad M., Gagné M., Kashyap R. 2014. Fiber Bragg gratings for low-temperature measurement. Opt. Exp, 22, 27681–27694.
  • 24. Boateng E., Schubel P., Umer R. 2019.Thermal isolation of FBG optical fibre sensors for composite cure monitoring Sensors and Actuators A, 287, 158–167.
  • 25. Schubela P., Umera R., Boateng E. 2018. Modelling heat transfer through an FBG optical fibre. Composites Part A: Applied Science and Manufacturing, 109, 184–196.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5575c893-186d-410d-bf77-8658effdeb1a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.