Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Safety in hydrogen storage is a key factor for its potential use in modern energy systems. Hydrogen is often referred to as the fuel of the future and therefore poses significant safety challenges due to its high flammability, low molecular density, and ability to easily penetrate various materials. Traditional methods of storing hydrogen include high-pressure storage under high pressures of 35-70 MPa in pressurized vessels and the storage of liquid hydrogen at temperatures as low as -253°C. Metal hydride hydrogen storage tanks are a safe alternative to these traditional storage systems. Hydrogen is a chemically bonded system to metal alloys at pressures under 10 bar(a) and room temperature, eliminating safety risks. During the absorption and desorption of hydrogen, endothermic and exothermic reactions occur, necessitating efficient thermal management. To ensure effective thermal management of the storage tank, various approaches can be applied. One highly innovative solution involves the use of a closedloop heat pipe (LHP). This system requires no pumping work during operation; thus, it has low energy requirements for operation. The article presents the design of a thermal management system for heating and cooling a metal hydride hydrogen storage tank, along with the development of a physical model of the tank using loop heat pipes. It also discusses the experimental results obtained from measurements on the physical model. Results demonstrate that a well-designed thermal management system ensures optimal operation of the metal hydride storage tank.
Wydawca
Rocznik
Tom
Strony
218--226
Opis fizyczny
Bibliogr. 11 poz., rys.
Twórcy
autor
- Faculty of Mechanical Engineering, Department of Power Engineering, University of Žilina, Slovakia
autor
- Faculty of Mechanical Engineering, Department of Power Engineering, University of Žilina, Slovakia
autor
- Faculty of Mechanical Engineering, Department of Power Engineering, University of Žilina, Slovakia
Bibliografia
- 1.Brestovič, T., Jasminská, N., Pyszko, R., Lázár, M., Puškár, M., 2015. Measurement of boundary conditions for numerical solution of temperature fields of metal hydride containers, Measurement, 72, 52-60, DOI: 10.1016/j.measurement.2015.04.027.
- 2.IDTechEx, 2023. Hydrogen Economy 2023-2033: Production, Storage, Distribution, and Applications, [online]. URL: https://www.idtechex.com/en/research-report/hydrogen-economy2023-2033-production-storage-distribution-and-applications/946.
- 3.Lee, S. W., Lee, H. S., Park, Y. J., et al., 2011. Combustion and emission characteristics of HCNG in a constant volume chamber, Journal of Mechanical Science and Technology, 25, 489-494, DOI: 10.1007/s12206-010-1231-5.
- 4.Morinaga, M., Yukawa, H., 2002. Nature of chemical bond and phase stability of hydrogen storage compounds, Materials Science and Engineering: A, Volumes 329-331, 268-275. DOI: 10.1016/S0921-5093(01)01592-1.
- 5.Møller, K. T., Jensen, T. R., Akiba, E., Li, H., 2017. Hydrogen - A sustainable energy carrier, Progress in Natural Science: Materials International, 27(1), 34-40, DOI: 10.1016/j.pnsc.2016.12.014.
- 6.Panda, P. P., Hecht, E. S., 2017. Ignition and flame characteristics of cryogenic hydrogen releases, International Journal of Hydrogen Energy, 42(1), 775-785, DOI: 10.1016/j.ijhydene. 2016.08.051.
- 7.Perelli, S., Genna, G., 2022. Hazards Identification and Risk Management of Hydrogen Production and Storage Installations, Chemical Engineering Transactions, 96, 193-198, DOI: 10.3303/CET2296033.
- 8.Polačiková, M., Nemec, P., Malcho, M., Jandačka, J., 2022. Experimental Investigations of a Passive Cooling System Based on the Gravity Loop Heat Pipe Principle for an Electrical Cabinet, Applied Sciences, 12, 1634, DOI: 10.3390/app12031634.
- 9.Usman, M. R., 2022. Hydrogen storage methods: Review and current status, Renewable and Sustainable Energy Reviews, 167, 112743, DOI: 10.1016/j.rser.2022.112743.
- 10.Vidas, L., Castro, R., Pires, A., 2022. A Review of the Impact of Hydrogen Integration in Natural Gas Distribution Networks and Electric Smart Grids, Energies, 15, 3160, DOI: 10.3390/en15093160
- 11.Zhu, Z., Zhu, S., Lu, H., Wu, J., Yan, K., Cheng, H., Liu, J., 2019. Stability of LaNi5-Co alloys cycled in hydrogen - Part 1: Evolution in gaseous hydrogen storage performance, International Journal of Hydrogen Energy, 44, DOI: 10.1016/j.ijhydene.2019.04.111.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5575a06f-6fcb-423e-b93c-8cc9484fc9b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.