PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Strain Monitoring in Woven Fabrics with Locally Induced Mass Irregularities Using an Image Based Method

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Badanie odkształceń tkanin przy stosowaniu lokalnie wprowadzonych regularności masy liniowej za pomocą metody opartej o analizę obrazu
Języki publikacji
EN
Abstrakty
EN
The aim of this work was to study the effect of induced mass irregularities of yarn on the strain monitoring of fabric during a tensile test. Slub yarns with different induced mass irregularities were produced and used as weft yarns in plain woven fabric. The Digital Image Correlation (DIC) method was used to evaluate the strain distribution map of the fabric during the tensile test. Images of the reference sample as well as of the strained fabric under the sequential strain applied were captured. By applying the DIC method, a strain distribution map of the fabric at a certain value of the strain applied was calculated for all samples. Results of the strain map calculated were then compared with the image of the actual fabric. It was found that there was good agreement between the map of strain distribution calculated by DIC and the local concentration of strain in the fabric. The results also revealed that the variation in strain distribution in the fabric during the tensile test was correlated exponentially to the breaking stress in cN/tex) of yarn as well as the breaking strength in N of the fabric.
PL
Celem pracy było badanie efektu prowadzonych nierównomierności masy liniowej przędzy na badanie odkształcenia tkanin podczas testów wytrzymałościowych. W wątku zastosowano przędze fantazyjne pęczkowe o różnym rozkładzie masy liniowej dla wyprodukowania tkanin o splocie płóciennym. Zastosowano metodę cyfrowej korelacji obrazu dla oceny rozkładu odkształceń. Wykonano mapy rozkładu odkształceń podczas testów wytrzymałościowych. Mierzono i porównywano obrazy próbek wzorcowych. Stwierdzono dobrą zgodność pomiędzy mapami rozkładu odkształceń obliczonymi teoretycznie i potwierdzonymi eksperymentalnie. Zmiany w rozkładzie odkształceń w tkaninie podczas testów wytrzymałościowych wykazały, że istnieje zależność wykładnicza pomiędzy odkształceniami a naprężeniami zrywającymi w cN/tex, oraz siłą zrywającą w N.
Rocznik
Strony
73--80
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran
autor
  • Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran
autor
  • Department of Textile Engineering, Faculty of Engineering, University of Bonab, Bonab, Iran
Bibliografia
  • 1. Grabowska KE and Ciesielska-Wróbel I. Characteristic and Application of Knop Fancy Yarns. Fibres & Textiles in Eastern Europe 2015; 23, 1(109): 17-25.
  • 2. Grabowska KE. Comparative Analysis of Fancy Yarns Produced on a Ring Twisting System. Fibres & Textiles in Eastern Europe 2010; 18, 1(78): 36-40.
  • 3. Ilhan I, Babaarslan O and Vuruskan D. Effect of Descriptive Parameters of Slub Yarn on Strength and Elongation Properties. Fibres and Textiles in Eastern Europe 2012; 20, 3(92): 33-38.
  • 4. Lu Y, Gao W and Wang H. A model for the twist distribution in the slub-yarn. International Journal of Clothing Science and Technology 2007; 19: 36-42.
  • 5. Ilhan I, Babaarslan O and Vuruskan D. A Theoretical Model and Practical Observation for Prediction of Slub Yarn Counts. TekstilvaKonfeksiyon 2010; 20: 306-312.
  • 6. Souid H, Babay A, Sahnoun M and Cheikrouhou M.. A Comparative Quality Optimization Between Ring Spun and Slub Yarns By Using Desirability Function. AUTEX Research Journal 2008; 8:72-76.
  • 7. Pan R, Gao W, Liu J and Wang H. Recognition the Parameters of Slub-yarn Based on Image Analysis. Journal of Engineered Fibers and Fabrics 2011; 6: 25-30.
  • 8. Moezzi M, Ghane M, Nicoletto G and JafariNedoushan R.. Analysis of the mechanical response of a woven polymeric fabric with locally induced damage. Material & Design 2014; 54: 79-90.
  • 9. Lijun Q, Zhang Z, Li X, Yang X, Feng Z, Wang Y, Miao H, He L and Gong X.. Full-field analysis of shear test on 3D orthogonal woven C/C composites. Composites: Part A: Applied Science and Manufacturing 2012; 43: 10-16.
  • 10. Ragaiiene A and Milaiene D. Mathematical Simulation of Elongat ion at Break after Fatigue Loading of Fabrics Containing Fancy Yarns. Fibres & Textiles in Eastern Europe 2013; 21, 4(100): 67-74.
  • 11. Devivier C, Pierron F, and Wisnom MR. Damage detection in composite materials using deflectometry, a full-field slope measurement technique. Composites: Part A: Applied Science and Manufacturing 2012; 43: 50-66.
  • 12. Caminero MA, Lopez-Pedrosa M, Pinna C and Soutis C. Damage monitoring and analysis of composite laminates with an open hole and adhesively bonded repairs using digital image correlation. Composites: Part B: Engineering 2013; 53: 76-91.
  • 13. Xin B and Hu J. An image based method for characterizing the mechanical behaviors of fabrics. Part 1: The measurement of in-plane tensile behavior. Fibres and Textiles in Eastern Europe 2008; 16, 1(66): 72-75.
  • 14. Xin B, Li Y, Qiu J and Liu Y. Texture modeling of fabric appearance evaluation based on image analysis. Fibres and Textiles in Eastern Europe 2012; 20, 2(91): 48-52.
  • 15. Ezazshahabi N, Latifi M and Madanipour K.. Surface roughness assessment of woven fabrics using fringe projection moiré techniques. Fibres and Textiles in Eastern Europe 2015; 23, 3(111):76-84.
  • 16. YekaniFard M, Sadat SM, Raji BB and Chattopadhyay A. Damage characterization of surface and sub-surface defects in stitch-bonded biaxial carbon/epoxy composites. Composites: Part B: Engineering 2014; 56: 821-829.
  • 17. Chu TC, Ranson WF, Sutton MA, and Peters WH. Applications of digital-image-correlation techniques to experimental mechanics. Experimental Mechanics 1985; 25: 232-244.
  • 18. Pan B, QianK M, Xie HM and Asundi A.. Two-dimensional Digital Image Correlation for In-plane Displacement and Strain Measurement: A Review. Measurement Science and Technology 2009; 20: 062001.
  • 19. Pan B, Xie HM, Xu BQ and Dai FL. Performance of sub-pixel registration algorithms in digital image correlation. Measurement Science and Technology 2006; 17: 1615-1621.
  • 20. Pan B, Asundi A, Xie H M and Gao J X. Digital Image correlation using iterative least squares and point wise least squares for displacement field and strain field measurements. Optics and Lasers in Engineering 2009; 47: 865-874.
  • 21. Jin H Q and Bruck H A. Theoretical development for pointwise digital image correlation. Optical Engineering 2005; 44: 1-14.
  • 22. Cheng P, Sutton MA, Schreier HW and McNeill SR. Full-field speckle pattern image correlation with B-spline deformation function. Experimental Mechanics 2002; 42: 344-352.
  • 23. Sun Y, Pang JHL, Wong CK and Su F. Finite element formulation for a digital image correlation method. Applied Optics 2005; 44: 7357-7363.
  • 24. Besnard G, Hild F and Roux S. Finite-element displacement fields analysis from digital images: application to Portevin-le chaterlier bands, Experimental Mechanics 2006; 46: 789-803.
  • 25. Rethore J, Hild F and Roux S. Shear-band capturing using a multiscale extended digital image correlation technique. Computer Methods Applied Mechanics Engineering 2007; 196: 5016-5030.
  • 26. Rethore J, Hild F and Roux S. Extended digital image correlation with crack shape optimization. International journal of Numerical Methods in Engineering 2008; 732: 248-272.
  • 27. Bruck HA, McNeil SR, Sutton MA and Peters WH. Digital image correlation using Newton-Raphson method of partial differential correction, Experimental Mechanics 1989; 29: 261-267.
  • 28. Vendroux G and Knauss WG. Submicron Deformation Field Measurements: Part 2 improved Digital Image Correlation. Experimental Mechanics 1998; 38: 86-92.
  • 29. Pan B. Reliability-guided digital image correlation for image deformation measurement. Applied Optics 2009; 48: 1535-1542.
  • 30. ASTM International. (2001).Standard Test Method for Linear Density of Yarn (Yarn Number) by the Skein Method, ASTM D 1907- 01. West Conshohocken, PA: Annual book of ASTM standards.
  • 31. ASTM International. (2002). Standard Test Method for Tensile Properties of Yarns by the Single-Strand Method1, ASTM D 2256- 02. West Conshohocken, PA: Annual book of ASTM standards.
  • 32. ASTM International (1995) Standard test method for breaking force and elongation of textile fabrics (strip method), ASTM D 5035- 95. West Conshohocken, PA: Annual book of ASTM standards.
  • 33. http://www.opticist.org/node/73.
  • 34. Pan B, Xie HM, Guo ZQ and Hua T. Full-field strain measurement using a two-dimensional Savitzky-Golay digital differentiator in digital image correlation. Optical Engineering 2007; 46: 033601.
  • 35. Montogomery DC. Introduction of Linear Regression Analysis, 5th ed. meas Hoboken, New Jersey: Wiley Series in Probability and Statistics, 2012.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-556e8f82-00bf-43ce-9172-5dc8174d1da2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.