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Abstrat. Some beautiful and powerful mathematial ideas are hard to present

to students beause of the involved abstrat language (notation, de�nitions, the-

orems, proofs, formulas) and lak of time. Animation and �mathematial experi-

ments� provide a remedy. In the �eld of stohastis, the Galton board experiment

presents several fundamental stohasti notions: a random event, independent ran-

dom events, the binomial distribution, limit distribution, normal distribution, inter-

pretation of probability, and leads to their better understanding. Random walk is

a natural generalization of the Galton board. We use random walks as a motivation

and presentation of basi priniples of fuzzy random events and fuzzy probability.

Fuzzy mathematis and fuzzy logi generalize lassial (Boolean) mathematis and

logi, re�et everyday experiene and deision making and have broader appliations.

Experimenting with random walks also sheds light on the transition from lassial to

fuzzy probability.

1. Introdution

Probability and statistis are onsidered to be important and useful om-

ponents of the general mathematial eduation. Unfortunately, due to the

abstrat language of mathematis (notation, de�nitions, theorems, proofs,

formulas) and lak of time it is usually hard to present students with some

beautiful and powerful stohasti ideas. A possible remedy is to work with

animation and �stohasti experiments�.
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Internet soures provide numerous and detailed information about experi-

ments with the Galton board, see for example:

http://en.wikipedia.org/wiki/Bean_mahine,

http://animation.yihui.name/prob:bean_mahi,

http://www.ju.edu/math/isep/Quinunx/Quinunx.html,

http://mathworld.wolfram.om/GaltonBoard.html.

Experimenting with the Galton board enables us to present several funda-

mental stohasti notions and laws, for example, a random event, independent

random events, the binomial, normal, and limit distributions, interpretation of

probability and so on, in a natural way, and leads to their better understand-

ing. Our goal is to study the Galton board and some of its generalizations

from the viewpoint of random walks and fuzzy probability. We believe that our

approah provides a vehile to onvey to students basi ideas of both lassial

and nonlassial �elds of stohastis and sheds some light on the transition

from lassial to fuzzy probability (f. [1℄, [4℄). The latter one re�ets everyday

experiene and deision making and has broader appliations.

In this paper we onentrate on �nite random walks, but the in�nite ones

onstitute another important topi to be inluded into �stohasti experi-

ments�, see for example

http://en.wikipedia.org/wiki/Random_walk.

Here we would like to point out a surprising fat that even a very small hange

of the probability p(l) = p(r) = 1/2 (going left or right) in the symmetri one-

dimensional random walk to p(l) = 1/2 + 0.01, p(r) = 1/2 − 0.01 leads to

a very nonsymmetri behaviour, see

http://artax.karlin.m�.uni.z/ maim1am/pub/antoh/pdf.

The next steps in animation should be relationships between the Galton

board and the Moivre-Laplae limit theorems leading to the normal distribu-

tion, various laws of large numbers, and limit theorems. �But that's another

story�, as Rudyard Kipling would say.

2. The Galton board

Aording to http://mathworld.wolfram.om/GaltonBoard.html the Galton

board, also known as a quinunx or bean mahine, is a devie for statisti-

al experiments named after English sientist Sir Franis Galton. It onsists

of an upright board with evenly spaed nails (or pegs) driven into its upper half,

where the nails are arranged in staggered order, and a lower half divided into

a number of evenly-spaed retangular bins. The front of the devie is overed

with a glass over to allow viewing of both nails and slots. In the middle of

the upper edge, there is a funnel into whih balls an be poured, where the di-

ameter of the balls must be muh smaller than the distane between the nails.
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The funnel is loated preisely above the entral nail of the seond row so that

eah ball, if perfetly entered, would fall vertially and diretly onto the up-

permost point of this nail's surfae. Eah ball follows a path starting at the

enter nail, then bounes either right or left and so on, and ultimately lands

in one of the bins.

Shematially, it an be visualized via a graph starting with one vertex v00

on the level zero, ontinuing with two verties v10, v11 on the level one and so

on, ending with N + 1 verties (bins) vN0, vN1, . . . , vNN on the level N , see

Figure 1.

Figure 1: Visualization of of a ball path via a graph

The Galton board is onneted to the binomial distribution in the following

way. Eah time a ball hits one of the nails, it an boune left (or right) with

some probability p(l) (right with the probability p(r) = 1 − p(l)). For sym-

metrially plaed nails, balls will boune left or right with equal probability,

so p(l) = p(r) = 1/2. The probability that a ball (after hitting N − 1 nails)

ends in the nth bin, n = 1, 2, . . . , N , is

P (n) =

(

N

n

)

p(l)np(r)N−n.

Even a novie in probability should be able to appreiate how experiment-

ing with the Galton board is related to random walks. Indeed, the path of

a ball an be viewed as a random walk on the graph of Galton board. The

paths onstitute a disrete probability spae and we o�er an alternative way

how to alulate the probability of a path. To this end, we reall the notion of

a onditional probability.
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Let us repeat some random experiment N times independently (the out-

omes do not depend on the previous experiments). We onsider two events A
and B, nB is the number of ourrene of B (we assume nB > 0), and nA∩B

is the number of their joint ourrenes (we ount only ourrenes of A when

B has ourred). Then
nA∩B

nB
=

nA∩B/N

nB/N

means that the onditional probability of A given B should be de�ned as

P (A|B) =
P (A ∩ B)

P (B)
.

Of ourse, we assume that P (B) > 0 and the de�nition is based on the inter-

pretation of probability via relative frequeny.

QUESTION: What is the probability of the path (v00, v10, . . . , vN0)?

Figure 2: Events as sets of paths

Denote by A(v00, v10) the set of all paths going trough v10, A(v00, v11) the set
of all paths going trough v11, and A(v00, v10, v20) the set of all paths going

trough v10 and then through v20.

It is easy to see (Figure 2) that P
(

A(v00, v10)
)

= P
(

A(v00, v11)
)

= 1/2 and

A(v00, v10, v20) ⊂ A(v00, v10). Further,

P
(

A(v00, v10, v20)|A(v00, v10)
)

= P
(

A(v00, v10, v21)|A(v00, v10)
)

= 1/2.

Thus

P
(

A(v00, v10, v20)|A(v00, v10)
)

=
P

(

A(v00, v10, v20) ∩ A(v00, v10)
)

P
(

A(v00, v10)
)

implies that P
(

A(v00, v10, v20)
)

= (1/2)2.
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Repeating the reasoning, we arrive to the onlusion that the probability

of the path (v00, v10, . . . , vN0) equals (1/2)N . Analogously, we an alulate

the probability of any other path: it is equal to (1/2)N . So, we ended up

with a lassial (disrete) probability spae the elementary events of whih

are exatly the paths of balls in the Galton experiment.

3. Walking on the Galton board

The random walk on the lassial Galton board is rather simple. Eah vertex

vNk, k = 0, 1, 2, . . . , N , is absorbing, other verties are not. From any other

vertex a ball an proeed to two adjaent verties on the next level with equal

probability 1/2. We an study �two step walks� or �k step walks� and ask

about the orresponding onditional probabilities. In suh ases ombinatoris

su�es. On a more ompliated board, a ball at eah vertex an proeed to

more than two points on the next level and the onditional probabilities an

vary from one level to the next level, and then ombinatorial methods do not

su�e. We believe (see the next setion) that fuzzy probability o�ers a natural

approah to suh random experiments.

The original Galton board an be used for less traditional experiments.

We mention two of them. First, let us imagine that inside the board there is

another funnel pointing to some �xed vertex vij whih fores all the balls to

through it. We an study the relationships between the (disrete) probability

spaes desribing the modi�ed experiment and the original one. Seond, let us

imagine that behind the board a magnet is plaed to in�uene the fall of balls.

This time it is impossible to alulate the probabilities of individual paths but,

using statistial tests, we an arry out a large number of experiments and

test whether the magnet has an impat on the experiment. Similar �statistial

ativities� an be arried out in the ase of the �rst modi�ed experiment.

A less traditional approah to walking on the Galton board is to study

the transition of balls from a given level to the next one. Eah level an

be viewed as a disrete probability spae, the transition an be studied as

a transformation of one probability spae into another, and the onseutive

transitions an be hained as the ompositions of transformations.

4. Transformations

Let Ω = {ω1, ω2, . . . , ωm} be a �nite set, let p be a probability funtion on Ω,

i.e. 0 ≤ p(ωi) ≤ 1 and
∑m

i=1 p(ωi) = 1. Then (Ω, p) is said to be a disrete

probability spae. Note that to eah probability funtion p on Ω there or-

responds a probability measure P de�ned on subsets of Ω and, for disrete

probability spaes, there is a natural one-to-one orrespondene between prob-

ability funtions and probability measures. In what follows, all the probability

spaes will be disrete.
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De�nition 1. Let (Ω, p) and (Ξ, q) be probability spaes. Let T be a map of

Ω = {ω1, ω2, . . . , ωm} into Ξ = {ξ1, ξ2, . . . , ξn} suh that

q(ξj) =
∑

ωi∈T←(ξj)

p(ωi) for all j ∈ {1, 2, . . . , n} suh that q(ξj) > 0.

Then T is said to be a transformation of (Ω, p) to (Ξ, q). If Ξ is a set of real

numbers, then T is said to be a random variable.

Eah transformation T an be visualized as a system of pipelines going

from Ω to Ξ, through whih p �ows and results in q, see Figure 3 (f. [1℄, [2℄).

Figure 3: Transformation of a probability spae

Let (Ω, p) and (Ξ, q) be probability spaes. It is natural to ask the following

question: Does there always exist a transformation of (Ω, p) to (Ξ, q)? The

answer is NO.

Indeed, for probability spaes (Ω, p) and (Ξ, q), if Ξ has more points than Ω,

p(ωi) = 1/m for all i = 1, 2, . . . ,m, and q(ξj) = 1/n for all j = 1, 2, . . . , n,
then there is no transformation of (Ω, p) to (Ξ, q).

As shown in [1℄ and [2℄, if we replae the lassial pipeline (sending the

whole amount of eah p(ωi) to exatly one ξj) by a more omplex pipeline

(sending eah p(ωi) proportionally to several/all points of Ξ), then the answer

is YES. The solution, alled a �fuzzy transformation�, is based on Figure 4.

Observe that our omplex pipeline is determined by a speial matrix

A = (aij)m×n, and the orresponding �fuzzy transformation� of p on Ω into q
on Ξ an be desribed as follows: q (as a vetor) is the (matrix) produt of p
(as a vetor) and A. The ith row of A

qi = (ai1, ai2, . . . , ain)

is a probability funtion on Ξ, and aij an be interpreted as the probability

of �transition� from ωi to ξj ∈ Ξ, see [3℄.
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Figure 4: �Fuzzy transformation� of a probability spae

De�nition 2. Let A = (aij)m×n be an m-by-n matrix suh that all aij are

non-negative and
∑n

j=1 aij = 1 for all i, 1 ≤ i ≤ m. Then A is said to be

a generalized stohasti matrix. Further, if ai,j ∈ {0, 1} for all indexes, then

A is said to be a risp generalized stohasti matrix. If m = 1, then A is

ondensed to a = (a1, a2, . . . , an) and is alled a stohasti vetor. If m = n,
then A is alled a stohasti matrix.

Note that the produt of two generalized stohasti matries A = (aij)m×n

and B = (bij)n×l is a generalized stohasti m-by-l matrix (in partiular, the

produt of a stohasti vetor and a generalized stohasti matrix is a stohas-

ti vetor).

De�nition 3. Let (Ω, p), Ω = {ω1, . . . , ωm}, and (Ξ, q), Ξ = {ξ1, . . . , ξn}, be
probability spaes. Let A = (aij)m×n be a generalized stohasti matrix. Let

TA be a map of Ω into the set of all probability funtions on Ξ de�ned by

TA(ωi) = (ai1, ai2, . . . , ain), i = 1, 2, . . . ,m.

If q = pA, then TA is said to be a fuzzy transformation of (Ω, p) to (Ξ, q).

Let (Ω, p) and (Ξ, q) be probability spaes. De�ne A = (aij)m×n as follows:

q = (ai1, ai2, . . . , ain), i = 1, 2, . . . ,m.

Let TA be the orresponding map of Ω sending eah ωi into q.

Lemma 1. TA is a fuzzy transformation of (Ω, p) to (Ξ, q).
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Note that there are other (non trivial) fuzzy transformations of (Ω, p) to

(Ξ, q), and fuzzy transformations are related to probability funtions on the

produt Ω × Ξ suh that p and q are marginal probabilities, see [3℄.

Let (Ω, p), Ω = {ω1, ω2, . . . , ωm}, (Ξ, q), Ξ = {ξ1, ξ2, . . . , ξn}, and (Λ, r),
Λ = {λ1, λ2, . . . , λl} be disrete probability spaes. Let A = (aij)m×n and

B = (bij)n×l be generalized stohasti matries suh that TA is a fuzzy trans-

formation of (Ω, p) to (Ξ, q) and TB is a fuzzy transformation of (Ξ, q) to

(Λ, r). Let C = (cij)m×l = A×B and let TC be the orresponding map of Ω
into probability funtions on Λ.

Lemma 2. TC is a fuzzy transformation of (Ω, p) to (Λ, r).

5. Generalized random walk

A generalized random walk an be viewed as a �nite series of suessive fuzzy

transformations �governed� via the produt of onstituent matries. Indeed,

for l = 1, 2, . . . , N , let (Ωl, pl), Ωl = {ωl1, ωl2, . . . , ωlml
}, be disrete prob-

ability spaes and, for l = 1, 2, . . . , N − 1, let Al be generalized stohasti

matries suh that TAl
is the orresponding fuzzy transformation of (Ωl, pl)

to (Ωl+1, pl+1).
The starting point (top vertex) an be viewed as a trivial probability spae

(Ω0, po), where Ω0 onsists of just one point {ω00} and p0(ω00) = 1. Formally,

p1 an be viewed as the �fuzzy image� of p0 and (Ω1, p1) an be viewed as the

fuzzy transformation of (Ω0, po) (via Tp1
). Consequently,

pN = p1A1A2 . . .AN−1

enables us to alulate the probability of �a generalized random walk starting

at ω00 ends up at ωNk, k = 1, 2, . . . ,mN �.

The fat that we send a point (elementary event) to a probability measure

has de�nitely a quantum nature and haraterizes the transition from lassial

to fuzzy transformations [1℄.
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