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RANDOM WALK - FUZZY ASPECTS
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Abstract. Some beautiful and powerful mathematical ideas are hard to present
to students because of the involved abstract language (notation, definitions, the-
orems, proofs, formulas) and lack of time. Animation and “mathematical experi-
ments” provide a remedy. In the field of stochastics, the Galton board experiment
presents several fundamental stochastic notions: a random event, independent ran-
dom events, the binomial distribution, limit distribution, normal distribution, inter-
pretation of probability, and leads to their better understanding. Random walk is
a natural generalization of the Galton board. We use random walks as a motivation
and presentation of basic principles of fuzzy random events and fuzzy probability.
Fuzzy mathematics and fuzzy logic generalize classical (Boolean) mathematics and
logic, reflect everyday experience and decision making and have broader applications.
Experimenting with random walks also sheds light on the transition from classical to
fuzzy probability.

1. Introduction

Probability and statistics are considered to be important and useful com-
ponents of the general mathematical education. Unfortunately, due to the
abstract language of mathematics (notation, definitions, theorems, proofs,
formulas) and lack of time it is usually hard to present students with some
beautiful and powerful stochastic ideas. A possible remedy is to work with
animation and “stochastic experiments”.
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Internet sources provide numerous and detailed information about experi-
ments with the Galton board, see for example:

http://en.wikipedia.org/wiki/Bean machine,

http://animation.yihui.name/prob:bean _machi,

http://www.jcu.edu/math/isep/Quincunx/Quincunx.html,

http://mathworld.wolfram.com/GaltonBoard.html.
Experimenting with the Galton board enables us to present several funda-
mental stochastic notions and laws, for example, a random event, independent
random events, the binomial, normal, and limit distributions, interpretation of
probability and so on, in a natural way, and leads to their better understand-
ing. Our goal is to study the Galton board and some of its generalizations
from the viewpoint of random walks and fuzzy probability. We believe that our
approach provides a vehicle to convey to students basic ideas of both classical
and nonclassical fields of stochastics and sheds some light on the transition
from classical to fuzzy probability (cf. [1], [4]). The latter one reflects everyday
experience and decision making and has broader applications.

In this paper we concentrate on finite random walks, but the infinite ones
constitute another important topic to be included into “stochastic experi-
ments”, see for example

http://en.wikipedia.org/wiki/Random walk.

Here we would like to point out a surprising fact that even a very small change
of the probability p(l) = p(r) = 1/2 (going left or right) in the symmetric one-
dimensional random walk to p(l) = 1/2 4+ 0.01, p(r) = 1/2 — 0.01 leads to
a very nonsymmetric behaviour, see

http://artax.karlin.mff.cuni.cz/ macimlam/pub/antoch/pdf.

The next steps in animation should be relationships between the Galton
board and the Moivre-Laplace limit theorems leading to the normal distribu-
tion, various laws of large numbers, and limit theorems. “But that’s another
story”, as Rudyard Kipling would say.

2. The Galton board

According to http://mathworld.wolfram.com/GaltonBoard.html the Galton
board, also known as a quincunx or bean machine, is a device for statisti-
cal experiments named after English scientist Sir Francis Galton. It consists
of an upright board with evenly spaced nails (or pegs) driven into its upper half,
where the nails are arranged in staggered order, and a lower half divided into
a number of evenly-spaced rectangular bins. The front of the device is covered
with a glass cover to allow viewing of both nails and slots. In the middle of
the upper edge, there is a funnel into which balls can be poured, where the di-
ameter of the balls must be much smaller than the distance between the nails.
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The funnel is located precisely above the central nail of the second row so that
each ball, if perfectly centered, would fall vertically and directly onto the up-
permost point of this nail’s surface. Each ball follows a path starting at the
center nail, then bounces either right or left and so on, and ultimately lands
in one of the bins.

Schematically, it can be visualized via a graph starting with one vertex wvgg
on the level zero, continuing with two vertices v1g, v11 on the level one and so

on, ending with N + 1 vertices (bins) vng, N1, --., Unn On the level N see
Figure 1.
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Figure 1: Visualization of of a ball path via a graph

The Galton board is connected to the binomial distribution in the following
way. Each time a ball hits one of the nails, it can bounce left (or right) with
some probability p(l) (right with the probability p(r) = 1 — p(l)). For sym-
metrically placed nails, balls will bounce left or right with equal probability,
so p(l) = p(r) = 1/2. The probability that a ball (after hitting N — 1 nails)
ends in the nth bin,n =1,2,..., N, is

P = ()oY

n

Even a novice in probability should be able to appreciate how experiment-

ing with the Galton board is related to random walks. Indeed, the path of

a ball can be viewed as a random walk on the graph of Galton board. The

paths constitute a discrete probability space and we offer an alternative way

how to calculate the probability of a path. To this end, we recall the notion of
a conditional probability.
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Let us repeat some random experiment N times independently (the out-
comes do not depend on the previous experiments). We consider two events A
and B, np is the number of occurrence of B (we assume np > 0), and nanp
is the number of their joint occurrences (we count only occurrences of A when
B has occurred). Then

NANB nAmB/ N
ng  np /N

means that the conditional probability of A given B should be defined as

P(ANB)

P(AIB) = =55

Of course, we assume that P(B) > 0 and the definition is based on the inter-

pretation of probability via relative frequency.
QUESTION: What is the probability of the path (vog, v10,-..,vN0)7

o,
event A(voo, v10) o

(/]
event A(voo, v10, v20) Vo

o,

Figure 2: Events as sets of paths

Denote by A(vgg, v19) the set of all paths going trough v1g, A(vgg,v11) the set
of all paths going trough w11, and A(vgg, v10,v20) the set of all paths going
trough v1g and then through wog.

It is easy to see (Figure 2) that P(A(voo, v10)) = P(A(UOO, 1)11)) =1/2 and
A(UOQ, V10, ’1)20) C A(’UQ(), ’1)10). Further,

P(A(voo, v10, v20)|A(v00, v10)) = P (A(v00, v10,v21)|A(vo0, v10)) = 1/2.
Thus

P(A(voo, v10,v20) N A(vo0,v10))
P(A(Uoo, 010))

P (A(vo0,v10,v20)|A(v0, v10)) =

implies that P(A(Uoo,vm,UQO)) = (1/2)%.
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Repeating the reasoning, we arrive to the conclusion that the probability
of the path (vgo,v10,...,vn0) equals (1/2)Y. Analogously, we can calculate
the probability of any other path: it is equal to (1/2)V. So, we ended up
with a classical (discrete) probability space the elementary events of which
are exactly the paths of balls in the Galton experiment.

3. Walking on the Galton board

The random walk on the classical Galton board is rather simple. Each vertex
uNk, k= 0,1,2,..., N, is absorbing, other vertices are not. From any other
vertex a ball can proceed to two adjacent vertices on the next level with equal
probability 1/2. We can study “two step walks” or “k step walks” and ask
about the corresponding conditional probabilities. In such cases combinatorics
suffices. On a more complicated board, a ball at each vertex can proceed to
more than two points on the next level and the conditional probabilities can
vary from one level to the next level, and then combinatorial methods do not
suffice. We believe (see the next section) that fuzzy probability offers a natural
approach to such random experiments.

The original Galton board can be used for less traditional experiments.
We mention two of them. First, let us imagine that inside the board there is
another funnel pointing to some fixed vertex v;; which forces all the balls to
through it. We can study the relationships between the (discrete) probability
spaces describing the modified experiment and the original one. Second, let us
imagine that behind the board a magnet is placed to influence the fall of balls.
This time it is impossible to calculate the probabilities of individual paths but,
using statistical tests, we can carry out a large number of experiments and
test whether the magnet has an impact on the experiment. Similar “statistical
activities” can be carried out in the case of the first modified experiment.

A less traditional approach to walking on the Galton board is to study
the transition of balls from a given level to the next one. Each level can
be viewed as a discrete probability space, the transition can be studied as
a transformation of one probability space into another, and the consecutive
transitions can be chained as the compositions of transformations.

4. Transformations

Let Q = {w1,ws, ..., wy} be a finite set, let p be a probability function on 2,
ie. 0 <p(w) <land > ", p(w;) =1. Then (2,p) is said to be a discrete
probability space. Note that to each probability function p on ) there cor-
responds a probability measure P defined on subsets of €2 and, for discrete
probability spaces, there is a natural one-to-one correspondence between prob-
ability functions and probability measures. In what follows, all the probability
spaces will be discrete.
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Definition 1. Let (2,p) and (2, q) be probability spaces. Let T be a map of
Q= {wi,wa,...,wn} into 2= {&, &, ..., &} such that

q(&) = Z p(w;) forall je{1,2,...,n} such that q(&;) > 0.
wi €T (&5)

Then T is said to be a transformation of (Q2,p) to (Z,q). If Z is a set of real
numbers, then T is said to be a random variable.

Each transformation T can be visualized as a system of pipelines going
from € to =, through which p flows and results in ¢, see Figure 3 (cf. [1], [2]).

T/ E:{ &1 £j gn}

fH? (&) a(&)) \ q(&n)
@ ) —Tml) W

w, p(wi) T (wi)

f:» P(wm) T(wm)

Figure 3: Transformation of a probability space

Let (2, p) and (Z, ¢) be probability spaces. It is natural to ask the following
question: Does there always exist a transformation of (2,p) to (Z,q)? The
answer is NO.

Indeed, for probability spaces (€2, p) and (Z, q), if = has more points than €2,
p(w;)) = 1/m for all i = 1,2, ...,m, and ¢(§;) = 1/n for all j = 1,2, ... n,
then there is no transformation of (Q,p) to (Z,q).

As shown in [1] and [2], if we replace the classical pipeline (sending the
whole amount of each p(w;) to exactly one &;) by a more complex pipeline
(sending each p(w;) proportionally to several/all points of =), then the answer
is YES. The solution, called a “fuzzy transformation”, is based on Figure 4.

Observe that our complex pipeline is determined by a special matrix
A = (a;j)mxn, and the corresponding “fuzzy transformation” of p on 2 into ¢
on = can be described as follows: ¢ (as a vector) is the (matrix) product of p
(as a vector) and A. The ith row of A

qi = (aila @52, - - - aain)

is a probability function on Z, and a;; can be interpreted as the probability
of “transition” from w; to &; € Z, see [3].
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Figure 4: “Fuzzy transformation” of a probability space

Definition 2. Let A = (a;j)mxn be an m-by-n matriz such that all a;; are
non-negative and Z?Zl ai;j = 1 for all i, 1 < i < m. Then A is said to be
a generalized stochastic matrix. Further, if a; ; € {0,1} for all indexes, then
A is said to be a crisp generalized stochastic matrix. If m = 1, then A is
condensed to a = (ay,aqg, ..., a,) and is called a stochastic vector. If m = n,
then A 1is called a stochastic matrix.

Note that the product of two generalized stochastic matrices A = (a;;)mxn
and B = (bj;)nx; is a generalized stochastic m-by-I matrix (in particular, the
product of a stochastic vector and a generalized stochastic matrix is a stochas-
tic vector).

Definition 3. Let (2,p), Q = {w1,...,wm}, and (E,q), E={&,..., &}, be

probability spaces. Let A = (aij)mxn be a generalized stochastic matriz. Let

Ta be a map of Q) into the set of all probability functions on = defined by

TA(wi) = (aﬂ, (075 PN ,am), 1= 1, 2, NN

If ¢ = pA, then T is said to be a fuzzy transformation of (2, p) to (Z,q).

Let (Q,p) and (Z, ¢) be probability spaces. Define A = (a;;)mxn as follows:
q= (ailva’i27"'7a’in)7 i = 1727 s
Let T be the corresponding map of €2 sending each w; into q.

Lemma 1. Ta is a fuzzy transformation of (Q,p) to (Z,q).
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Note that there are other (non trivial) fuzzy transformations of (€2,p) to
(2,¢q), and fuzzy transformations are related to probability functions on the
product 2 x Z such that p and ¢ are marginal probabilities, see [3].

Let (Q,p), @ = {w1,wa, ..., wn}, (B,9), 2 ={&,&, ..., &}, and (A7),
A = {1, A2, ..., A} be discrete probability spaces. Let A = (a;j)mxn and
B = (bij)nxi be generalized stochastic matrices such that T'a is a fuzzy trans-
formation of (Q,p) to (£,q) and Ty is a fuzzy transformation of (Z,q) to
(A,7). Let C = (¢ij)mxi = A x B and let Tc be the corresponding map of €2
into probability functions on A.

Lemma 2. T¢ is a fuzzy transformation of (2, p) to (A,r).

5. Generalized random walk

A generalized random walk can be viewed as a finite series of successive fuzzy
transformations “governed” via the product of constituent matrices. Indeed,
for 1 =1,2,...,N, let (Q,p1), & = {win,wi2, ...,wim, }, be discrete prob-
ability spaces and, for [ = 1,2,..., N — 1, let A; be generalized stochastic
matrices such that Ta, is the corresponding fuzzy transformation of (£, p;)
0 (g1, i)

The starting point (top vertex) can be viewed as a trivial probability space
(Q0,po), where Q consists of just one point {wgg} and po(wpg) = 1. Formally,
p1 can be viewed as the “fuzzy image” of pg and (€21, p1) can be viewed as the
fuzzy transformation of (Qo,p,) (via T},,). Consequently,

PN =p1A1As.. AN

enables us to calculate the probability of “a generalized random walk starting
at wgo ends up at wyg, k=1,2, ...,mn".

The fact that we send a point (elementary event) to a probability measure
has definitely a quantum nature and characterizes the transition from classical

to fuzzy transformations [1].
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