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Abstra
t. Some beautiful and powerful mathemati
al ideas are hard to present

to students be
ause of the involved abstra
t language (notation, de�nitions, the-

orems, proofs, formulas) and la
k of time. Animation and �mathemati
al experi-

ments� provide a remedy. In the �eld of sto
hasti
s, the Galton board experiment

presents several fundamental sto
hasti
 notions: a random event, independent ran-

dom events, the binomial distribution, limit distribution, normal distribution, inter-

pretation of probability, and leads to their better understanding. Random walk is

a natural generalization of the Galton board. We use random walks as a motivation

and presentation of basi
 prin
iples of fuzzy random events and fuzzy probability.

Fuzzy mathemati
s and fuzzy logi
 generalize 
lassi
al (Boolean) mathemati
s and

logi
, re�e
t everyday experien
e and de
ision making and have broader appli
ations.

Experimenting with random walks also sheds light on the transition from 
lassi
al to

fuzzy probability.

1. Introdu
tion

Probability and statisti
s are 
onsidered to be important and useful 
om-

ponents of the general mathemati
al edu
ation. Unfortunately, due to the

abstra
t language of mathemati
s (notation, de�nitions, theorems, proofs,

formulas) and la
k of time it is usually hard to present students with some

beautiful and powerful sto
hasti
 ideas. A possible remedy is to work with

animation and �sto
hasti
 experiments�.
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Internet sour
es provide numerous and detailed information about experi-

ments with the Galton board, see for example:

http://en.wikipedia.org/wiki/Bean_ma
hine,

http://animation.yihui.name/prob:bean_ma
hi,

http://www.j
u.edu/math/isep/Quin
unx/Quin
unx.html,

http://mathworld.wolfram.
om/GaltonBoard.html.

Experimenting with the Galton board enables us to present several funda-

mental sto
hasti
 notions and laws, for example, a random event, independent

random events, the binomial, normal, and limit distributions, interpretation of

probability and so on, in a natural way, and leads to their better understand-

ing. Our goal is to study the Galton board and some of its generalizations

from the viewpoint of random walks and fuzzy probability. We believe that our

approa
h provides a vehi
le to 
onvey to students basi
 ideas of both 
lassi
al

and non
lassi
al �elds of sto
hasti
s and sheds some light on the transition

from 
lassi
al to fuzzy probability (
f. [1℄, [4℄). The latter one re�e
ts everyday

experien
e and de
ision making and has broader appli
ations.

In this paper we 
on
entrate on �nite random walks, but the in�nite ones


onstitute another important topi
 to be in
luded into �sto
hasti
 experi-

ments�, see for example

http://en.wikipedia.org/wiki/Random_walk.

Here we would like to point out a surprising fa
t that even a very small 
hange

of the probability p(l) = p(r) = 1/2 (going left or right) in the symmetri
 one-

dimensional random walk to p(l) = 1/2 + 0.01, p(r) = 1/2 − 0.01 leads to

a very nonsymmetri
 behaviour, see

http://artax.karlin.m�.
uni.
z/ ma
im1am/pub/anto
h/pdf.

The next steps in animation should be relationships between the Galton

board and the Moivre-Lapla
e limit theorems leading to the normal distribu-

tion, various laws of large numbers, and limit theorems. �But that's another

story�, as Rudyard Kipling would say.

2. The Galton board

A

ording to http://mathworld.wolfram.
om/GaltonBoard.html the Galton

board, also known as a quin
unx or bean ma
hine, is a devi
e for statisti-


al experiments named after English s
ientist Sir Fran
is Galton. It 
onsists

of an upright board with evenly spa
ed nails (or pegs) driven into its upper half,

where the nails are arranged in staggered order, and a lower half divided into

a number of evenly-spa
ed re
tangular bins. The front of the devi
e is 
overed

with a glass 
over to allow viewing of both nails and slots. In the middle of

the upper edge, there is a funnel into whi
h balls 
an be poured, where the di-

ameter of the balls must be mu
h smaller than the distan
e between the nails.
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The funnel is lo
ated pre
isely above the 
entral nail of the se
ond row so that

ea
h ball, if perfe
tly 
entered, would fall verti
ally and dire
tly onto the up-

permost point of this nail's surfa
e. Ea
h ball follows a path starting at the


enter nail, then boun
es either right or left and so on, and ultimately lands

in one of the bins.

S
hemati
ally, it 
an be visualized via a graph starting with one vertex v00

on the level zero, 
ontinuing with two verti
es v10, v11 on the level one and so

on, ending with N + 1 verti
es (bins) vN0, vN1, . . . , vNN on the level N , see

Figure 1.

Figure 1: Visualization of of a ball path via a graph

The Galton board is 
onne
ted to the binomial distribution in the following

way. Ea
h time a ball hits one of the nails, it 
an boun
e left (or right) with

some probability p(l) (right with the probability p(r) = 1 − p(l)). For sym-

metri
ally pla
ed nails, balls will boun
e left or right with equal probability,

so p(l) = p(r) = 1/2. The probability that a ball (after hitting N − 1 nails)

ends in the nth bin, n = 1, 2, . . . , N , is

P (n) =

(

N

n

)

p(l)np(r)N−n.

Even a novi
e in probability should be able to appre
iate how experiment-

ing with the Galton board is related to random walks. Indeed, the path of

a ball 
an be viewed as a random walk on the graph of Galton board. The

paths 
onstitute a dis
rete probability spa
e and we o�er an alternative way

how to 
al
ulate the probability of a path. To this end, we re
all the notion of

a 
onditional probability.
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Let us repeat some random experiment N times independently (the out-


omes do not depend on the previous experiments). We 
onsider two events A
and B, nB is the number of o

urren
e of B (we assume nB > 0), and nA∩B

is the number of their joint o

urren
es (we 
ount only o

urren
es of A when

B has o

urred). Then
nA∩B

nB
=

nA∩B/N

nB/N

means that the 
onditional probability of A given B should be de�ned as

P (A|B) =
P (A ∩ B)

P (B)
.

Of 
ourse, we assume that P (B) > 0 and the de�nition is based on the inter-

pretation of probability via relative frequen
y.

QUESTION: What is the probability of the path (v00, v10, . . . , vN0)?

Figure 2: Events as sets of paths

Denote by A(v00, v10) the set of all paths going trough v10, A(v00, v11) the set
of all paths going trough v11, and A(v00, v10, v20) the set of all paths going

trough v10 and then through v20.

It is easy to see (Figure 2) that P
(

A(v00, v10)
)

= P
(

A(v00, v11)
)

= 1/2 and

A(v00, v10, v20) ⊂ A(v00, v10). Further,

P
(

A(v00, v10, v20)|A(v00, v10)
)

= P
(

A(v00, v10, v21)|A(v00, v10)
)

= 1/2.

Thus

P
(

A(v00, v10, v20)|A(v00, v10)
)

=
P

(

A(v00, v10, v20) ∩ A(v00, v10)
)

P
(

A(v00, v10)
)

implies that P
(

A(v00, v10, v20)
)

= (1/2)2.
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Repeating the reasoning, we arrive to the 
on
lusion that the probability

of the path (v00, v10, . . . , vN0) equals (1/2)N . Analogously, we 
an 
al
ulate

the probability of any other path: it is equal to (1/2)N . So, we ended up

with a 
lassi
al (dis
rete) probability spa
e the elementary events of whi
h

are exa
tly the paths of balls in the Galton experiment.

3. Walking on the Galton board

The random walk on the 
lassi
al Galton board is rather simple. Ea
h vertex

vNk, k = 0, 1, 2, . . . , N , is absorbing, other verti
es are not. From any other

vertex a ball 
an pro
eed to two adja
ent verti
es on the next level with equal

probability 1/2. We 
an study �two step walks� or �k step walks� and ask

about the 
orresponding 
onditional probabilities. In su
h 
ases 
ombinatori
s

su�
es. On a more 
ompli
ated board, a ball at ea
h vertex 
an pro
eed to

more than two points on the next level and the 
onditional probabilities 
an

vary from one level to the next level, and then 
ombinatorial methods do not

su�
e. We believe (see the next se
tion) that fuzzy probability o�ers a natural

approa
h to su
h random experiments.

The original Galton board 
an be used for less traditional experiments.

We mention two of them. First, let us imagine that inside the board there is

another funnel pointing to some �xed vertex vij whi
h for
es all the balls to

through it. We 
an study the relationships between the (dis
rete) probability

spa
es des
ribing the modi�ed experiment and the original one. Se
ond, let us

imagine that behind the board a magnet is pla
ed to in�uen
e the fall of balls.

This time it is impossible to 
al
ulate the probabilities of individual paths but,

using statisti
al tests, we 
an 
arry out a large number of experiments and

test whether the magnet has an impa
t on the experiment. Similar �statisti
al

a
tivities� 
an be 
arried out in the 
ase of the �rst modi�ed experiment.

A less traditional approa
h to walking on the Galton board is to study

the transition of balls from a given level to the next one. Ea
h level 
an

be viewed as a dis
rete probability spa
e, the transition 
an be studied as

a transformation of one probability spa
e into another, and the 
onse
utive

transitions 
an be 
hained as the 
ompositions of transformations.

4. Transformations

Let Ω = {ω1, ω2, . . . , ωm} be a �nite set, let p be a probability fun
tion on Ω,

i.e. 0 ≤ p(ωi) ≤ 1 and
∑m

i=1 p(ωi) = 1. Then (Ω, p) is said to be a dis
rete

probability spa
e. Note that to ea
h probability fun
tion p on Ω there 
or-

responds a probability measure P de�ned on subsets of Ω and, for dis
rete

probability spa
es, there is a natural one-to-one 
orresponden
e between prob-

ability fun
tions and probability measures. In what follows, all the probability

spa
es will be dis
rete.
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De�nition 1. Let (Ω, p) and (Ξ, q) be probability spa
es. Let T be a map of

Ω = {ω1, ω2, . . . , ωm} into Ξ = {ξ1, ξ2, . . . , ξn} su
h that

q(ξj) =
∑

ωi∈T←(ξj)

p(ωi) for all j ∈ {1, 2, . . . , n} su
h that q(ξj) > 0.

Then T is said to be a transformation of (Ω, p) to (Ξ, q). If Ξ is a set of real

numbers, then T is said to be a random variable.

Ea
h transformation T 
an be visualized as a system of pipelines going

from Ω to Ξ, through whi
h p �ows and results in q, see Figure 3 (
f. [1℄, [2℄).

Figure 3: Transformation of a probability spa
e

Let (Ω, p) and (Ξ, q) be probability spa
es. It is natural to ask the following

question: Does there always exist a transformation of (Ω, p) to (Ξ, q)? The

answer is NO.

Indeed, for probability spa
es (Ω, p) and (Ξ, q), if Ξ has more points than Ω,

p(ωi) = 1/m for all i = 1, 2, . . . ,m, and q(ξj) = 1/n for all j = 1, 2, . . . , n,
then there is no transformation of (Ω, p) to (Ξ, q).

As shown in [1℄ and [2℄, if we repla
e the 
lassi
al pipeline (sending the

whole amount of ea
h p(ωi) to exa
tly one ξj) by a more 
omplex pipeline

(sending ea
h p(ωi) proportionally to several/all points of Ξ), then the answer

is YES. The solution, 
alled a �fuzzy transformation�, is based on Figure 4.

Observe that our 
omplex pipeline is determined by a spe
ial matrix

A = (aij)m×n, and the 
orresponding �fuzzy transformation� of p on Ω into q
on Ξ 
an be des
ribed as follows: q (as a ve
tor) is the (matrix) produ
t of p
(as a ve
tor) and A. The ith row of A

qi = (ai1, ai2, . . . , ain)

is a probability fun
tion on Ξ, and aij 
an be interpreted as the probability

of �transition� from ωi to ξj ∈ Ξ, see [3℄.
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Figure 4: �Fuzzy transformation� of a probability spa
e

De�nition 2. Let A = (aij)m×n be an m-by-n matrix su
h that all aij are

non-negative and
∑n

j=1 aij = 1 for all i, 1 ≤ i ≤ m. Then A is said to be

a generalized sto
hasti
 matrix. Further, if ai,j ∈ {0, 1} for all indexes, then

A is said to be a 
risp generalized sto
hasti
 matrix. If m = 1, then A is


ondensed to a = (a1, a2, . . . , an) and is 
alled a sto
hasti
 ve
tor. If m = n,
then A is 
alled a sto
hasti
 matrix.

Note that the produ
t of two generalized sto
hasti
 matri
es A = (aij)m×n

and B = (bij)n×l is a generalized sto
hasti
 m-by-l matrix (in parti
ular, the

produ
t of a sto
hasti
 ve
tor and a generalized sto
hasti
 matrix is a sto
has-

ti
 ve
tor).

De�nition 3. Let (Ω, p), Ω = {ω1, . . . , ωm}, and (Ξ, q), Ξ = {ξ1, . . . , ξn}, be
probability spa
es. Let A = (aij)m×n be a generalized sto
hasti
 matrix. Let

TA be a map of Ω into the set of all probability fun
tions on Ξ de�ned by

TA(ωi) = (ai1, ai2, . . . , ain), i = 1, 2, . . . ,m.

If q = pA, then TA is said to be a fuzzy transformation of (Ω, p) to (Ξ, q).

Let (Ω, p) and (Ξ, q) be probability spa
es. De�ne A = (aij)m×n as follows:

q = (ai1, ai2, . . . , ain), i = 1, 2, . . . ,m.

Let TA be the 
orresponding map of Ω sending ea
h ωi into q.

Lemma 1. TA is a fuzzy transformation of (Ω, p) to (Ξ, q).
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Note that there are other (non trivial) fuzzy transformations of (Ω, p) to

(Ξ, q), and fuzzy transformations are related to probability fun
tions on the

produ
t Ω × Ξ su
h that p and q are marginal probabilities, see [3℄.

Let (Ω, p), Ω = {ω1, ω2, . . . , ωm}, (Ξ, q), Ξ = {ξ1, ξ2, . . . , ξn}, and (Λ, r),
Λ = {λ1, λ2, . . . , λl} be dis
rete probability spa
es. Let A = (aij)m×n and

B = (bij)n×l be generalized sto
hasti
 matri
es su
h that TA is a fuzzy trans-

formation of (Ω, p) to (Ξ, q) and TB is a fuzzy transformation of (Ξ, q) to

(Λ, r). Let C = (cij)m×l = A×B and let TC be the 
orresponding map of Ω
into probability fun
tions on Λ.

Lemma 2. TC is a fuzzy transformation of (Ω, p) to (Λ, r).

5. Generalized random walk

A generalized random walk 
an be viewed as a �nite series of su

essive fuzzy

transformations �governed� via the produ
t of 
onstituent matri
es. Indeed,

for l = 1, 2, . . . , N , let (Ωl, pl), Ωl = {ωl1, ωl2, . . . , ωlml
}, be dis
rete prob-

ability spa
es and, for l = 1, 2, . . . , N − 1, let Al be generalized sto
hasti


matri
es su
h that TAl
is the 
orresponding fuzzy transformation of (Ωl, pl)

to (Ωl+1, pl+1).
The starting point (top vertex) 
an be viewed as a trivial probability spa
e

(Ω0, po), where Ω0 
onsists of just one point {ω00} and p0(ω00) = 1. Formally,

p1 
an be viewed as the �fuzzy image� of p0 and (Ω1, p1) 
an be viewed as the

fuzzy transformation of (Ω0, po) (via Tp1
). Consequently,

pN = p1A1A2 . . .AN−1

enables us to 
al
ulate the probability of �a generalized random walk starting

at ω00 ends up at ωNk, k = 1, 2, . . . ,mN �.

The fa
t that we send a point (elementary event) to a probability measure

has de�nitely a quantum nature and 
hara
terizes the transition from 
lassi
al

to fuzzy transformations [1℄.
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