Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Seawater intrusions are a major environmental hazard for coastal freshwater aquifers. They are generated mainly by the uncontrolled exploitation of freshwater in pumping stations, if the aquifers are in hydraulic connection with the sea. In Romania, such marine intrusions have occurred in the southern part of Black Sea’s coastline, in Costinești and Vama Veche resorts, contaminating the main aquifers hosted in Sarmatian (late Middle Miocene) limestones, at distances ranging from hundreds of meters to over 2 km inland. For the study of these salinization phenomena, Vertical Electrical Sounding (VES) surveys were performed in the affected areas. These surveys allowed the delineation and spatial–temporal monitoring of the intrusions and offered information related to faults that may have provided pathways for seawater migration toward the exploitation wells. The 1D interpretation of VES apparent resistivity data was performed via a set of novel software applications. The forward modeling component of the applications uses digital linear filtering and allows the simulation of theoretical VES responses for horizontally-layered geological media with virtually unlimited number of layers. The pseudo-inversion component of the applications is based on a random sampling of the parameters space of the geoelectrical models. The interpretation of VES surveys recorded in Vama Veche area by using the elaborated software indicates that the seawater intrusion occurs at more than 40 m depth. This agrees with a well flow test which produced saltwater at 40–60 m depth in that area.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1845--1863
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
- Department of Geophysics, Faculty of Geology and Geophysics, University of Bucharest, 6 Traian Vuia Street, 020956 Bucharest, Romania
autor
- Department of Geophysics, Faculty of Geology and Geophysics, University of Bucharest, 6 Traian Vuia Street, 020956 Bucharest, Romania
Bibliografia
- 1. Binley A, Kemna A (2005) DC resistivity and induced polarization methods. In: Rubin Y, Hubbard SS (eds) Hydrogeophysics. Springer, Dordrecht, pp 129–156
- 2. Cazacu GB (2015) Dobrogea geology. In: Maftei C (ed) Extreme weather and impacts of climate change on water resources in the Dobrogea region. IGI Global, Pennsylvania, pp 73–118
- 3. Conea A (1970) Quaternary formations in Dobrogea (loess and paleo soils). Publishing House of the Romanian Academy, Bucharest (in Romanian)
- 4. Das UC, Ghosh DP (1974) The determination of filter coefficients for the computation of standard curves for dipole resistivity sounding over layered earth by linear digital filtering. Geophys Prospect 2(4):765–780
- 5. Georgescu P, Dinu C, Niculescu V, Ion D (1993) Some applications of VES to groundwater exploration in the vicinity of the Romanian coast of the Black Sea. Rev Roum Géophys 37:113–121
- 6. Georgescu P, Ioane D, Niculescu BM, Chitea F (2009) Long-time Geoelectrical modeling of groundwater contamination—case studies from Romania. In: Near surface 2009—15th European meeting of environmental and engineering geophysics, Dublin, Ireland, Extended Abstracts, paper P10, https://doi.org/10.3997/2214-4609.20147082
- 7. Georgescu P, Ioane D, Niculescu BM, Chitea F (2010) Geoelectrical investigations of marine intrusions on the Romanian Black Sea Shore. GeoEcoMarina 16:95–102
- 8. Ghosh DP (1971) The application of linear filter theory to the direct interpretation of geoelectrical resistivity sounding measurements. Geophys Prospect 19:192–217
- 9. Goldman M, Kafri U (2006) Hydrogeophysical applications in coastal aquifers. In: Vereecken H, Binley A, Cassiani G, Revil A, Titov K (eds) Applied hydrogeophysics. Springer, Dordrecht, pp 233–254
- 10. Goldman M, Gilad D, Ronen A, Melloul A (1991) Mapping of seawater intrusion into the coastal aquifer of Israel by the time domain electromagnetic method. Geoexploration 28:153–174
- 11. Goldman M, Gvirtzman H, Meju M, Shtivelman V (2005) Hydrogeophysical case studies at the regional scale. In: Rubin Y, Hubbard SS (eds) Hydrogeophysics. Springer, Dordrecht, pp 361–389
- 12. Guptasarma D (1982) Optimization of short digital linear filters for increased accuracy. Geophys Prospect 30:501–514
- 13. Kobr M, Mareš S, Paillet F (2005) Borehole geophysics for hydrogeological studies: principles and applications. In: Rubin Y, Hubbard SS (eds) Hydrogeophysics. Springer, Dordrecht, pp 291–331
- 14. Koefoed O (1970) A fast method for determining the layer distribution from the raised kernel function in geoelectrical soundings. Geophys Prospect 18:564–570
- 15. Liteanu E, Ghenea C (1966) Quaternary from Romania. Technical and Economic Studies, Series H, Nr. 1, Comitetul Geologic, Bucharest, Romania (in Romanian)
- 16. Moroșanu I (2007) Romanian continental plateau of the Black Sea: tectonic-sedimentary evolution and hydrocarbon potential. Oscar Print Publishing House, Bucharest
- 17. Mościcki WJ (2011) The use of the DC resistivity sounding in high mountain areas—example from periglacial zone of the Sucha Woda Valley (Tatra Mts., Poland). Studia Geomorphologica Carpatho-Balcanica XLV:107–120, ISSN 0081-6434
- 18. Mutihac V, Stratulat IM, Fechet RM (2004) Geology of Romania. Didactic and Pedagogic Publishing House, Bucharest (in Romanian)
- 19. O’Neill DJ (1975) Improved linear coefficients for application in apparent resistivity computations. Bull Aust Soc Explor Geophys 6(4):104–109
- 20. Paillet FL (2002) Spatial scale analysis in geophysics—integrating surface and borehole geophysics in groundwater studies. In: Singhroy VF, Hansen DT, Pierce RR, Johnson AIIA (eds) Spatial methods for solution of environmental and hydrologic problems—science, policy, and standardization. ASTM International Special Technical Publication, West Conshohocken, pp 77–91
- 21. Paillet FL, Hite L, Carlson M (1999) Integrating surface and borehole geophysics in ground water studies—an example using electromagnetic soundings in south Florida. J Environ Eng Geophys 4(1):45–55
- 22. Paine JG, Minty BRS (2005) Airborne hydrogeophysics. In: Rubin Y, Hubbard SS (eds) Hydrogeophysics. Springer, Dordrecht, pp 333–357
- 23. Parasnis DS (1986) Principles of applied geophysics, 4th edn. Chapman and Hall, New York
- 24. Săndulescu M (1984) Geotectonics of Romania. Technical Publishing House, Bucharest (in Romanian)
- 25. Sheriff SD (1992a) Spreadsheet modeling of electrical sounding experiments. Ground Water 30(6):971–974
- 26. Sheriff SD (1992b) Forward modeling of electrical sounding experiments using convolution and a spreadsheet. Comput Geosci 18(1):75–78
- 27. Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics, 2nd edn. Cambridge University Press, Cambridge
- 28. Țenu A, Davidescu F, Echinger L, Voerkelius S (1997) Quality evaluation of groundwaters in Southern Dobrogea. Theor Appl Karstol 10:63–77
- 29. Visarion M, Săndulescu M, Roșca V, Stănică D, Atanasiu L (1990) La Dobrogea dans le cadre de l’avant pays Carpatique. Rev Roum Géophys 34:55–65
- 30. Werner AD, Bakker M, Post VEA, Vandenbohede A, Lu C, Ataie-Ashtiani B, Simmons CT, Barry DA (2013) Seawater intrusion processes, investigation and management: recent advances and future challenges. Adv Water Resour 51:3–26
- 31. Yang C-H, Tong L-T, Huang C-F (1999) Combined application of DC and TEM to sea-water intrusion mapping. Geophysics 64:417–425
- 32. Zohdy AAR (1989) A new method for the automatic interpretation of Schlumberger and Wenner sounding curves. Geophysics 54(2):245–253
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-55614ef7-1e65-4765-b811-68c764eb478f