Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article presents the application of Chaboche nonlinear kinematic hardening model in simulations of uniaxial ratcheting. First, the symmetrical strain-controlled cyclic tension/compression tests for PA6 aluminum samples were done. Using the experimental stress–strain curve, initial material hardening parameters were determined by the ABAQUS software. The experimental curve was compared with the numerical one. For better fitting of both curves, the optimization procedure based on the least-square method was applied. Using the determined hardening parameters, numerical simulations of the ratcheting were done by the finite element analysis software. Numerical results were then compared with the experimental data obtained in the stress-controlled cyclic loading test.
Wydawca
Rocznik
Tom
Strony
57--61
Opis fizyczny
Bibliogr. 14 poz., rys., tab., wykr.
Twórcy
autor
- Department of Materials Forming and Processing, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 8 Powstańców Warszawy Ave., 35-959 Rzeszów, Poland
autor
- Department of Materials Forming and Processing, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 8 Powstańców Warszawy Ave., 35-959 Rzeszów, Poland
Bibliografia
- [1] S. LI: Investigation of elastoplastic ratchetting behavior of Stainless Steel 316 under cyclic uniaxial asymmetric loading at room temperature. Lehigh University – Lehigh Preserve, Bethlehem 2018.
- [2] S.K. PAUL: A critical review of experimental aspects in ratcheting fatigue: microstructure to specimen to component. J. Mater. Res. Technol., 8(2019)5, 4894-4914.
- [3] C.B. LIM, K.S. KIM, J.B. SEONG: Ratcheting and fatigue behavior of a copper alloy under uniaxial cycling loading with mean stress. Int. J. Fatigue., 31(2009)3, 501-507.
- [4] S. GOYAL, et al.: Low cycle fatigue and cyclic plasticity behavior of Indian PHWR/AHWR primary piping material. Procedia Eng., 55(2013), 136-143.
- [5] K. DUTTA, K.K. RAY: Ratcheting phenomenon and post-ratcheting tensile behaviour of an aluminum alloy. Mater. Sci. Eng. A-Struct., 540(2012), 30-37.
- [6] S.K. MISHRA, K. DUTTA, K.K. RAY: Fatigue life estimation in presence of ratcheting phenomenon for AISI 304LN stainless steel tested under uniaxial cyclic loading. Int. J. Damage Mech., 25(2016)3, 431-444.
- [7] C.L. PUN, et al.: Ratcheting behaviour of high strength rail steels under bi-axial compression-torsion loadings: experiment and simulation. Int. J. Fatigue, 66(2014), 138-154.
- [8] H. WANG, et al.: Uniaxial ratcheting behaviour of 304L stainless steel and ER308L weld joints. Mater. Sci. Eng. A, 708(2017), 21-42.
- [9] S. BARI, T. HASSAN: Anatomy of coupled constitutive models for ratcheting simulation. Int. J. Plast., 16(2000)3-4, 381-409.
- [10] X. JIANG, et al.: Constitutive model for time-dependent ratchetting of SS304 stainless steel: simulation and its finite element analysis. J. Theor. App. Mech.-Pol., 51(2013)1, 63-73.
- [11] V. BUDAHAZY, L. DUNAI: Parameter-refreshed Chaboche model for mild steel cyclic plasticity behaviour. Period. Polytech. Civil Eng., 57(2013)2, 139-155.
- [12] S. BARI, T. HASSAN: An advancement in cyclic plasticity modeling for multiaxial ratcheting simulation. Int. J. Plast., 18(2002)7, 873-894.
- [13] J.L. CHABOCHE: Modeling of ratcheting: evolution of various approaches. Eur. J. Mech. A-Solid., 13(1994), 501-518.
- [14] M. WÓJCIK, A. SKRZAT: Fuzzy logic enhancement of material hardening parameters obtained from tension-compression test. Continuum Mech. Thermodyn., 2019, 1-8. DOI:10.1007/ s00161-019-00805-y.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-55560cbd-bdc1-43d7-8987-7060c34874d4