PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Full-Scale Application of Up-flow High Rate Anaerobic Reactor with Substrate Modification and Effluent Recirculation for Sugarcane Vinasse Degradation and Biogas Generation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study was aimed at studying the potential of biogas (methane) production from vinasse wastewater in real full-scale application using a two-stage sequencing Up-flow High Rate Anaerobic Reactor (UHRAR), with effluent recirculation and substrate modification. A batch experiment was initially conducted prior to the full-scale application experiment. The batch experiment was done with experimental condition variable: undiluted sample (pH 6) and diluted samples (pH: 5; 6 and 7), while pH and methane production were observed for 50 days. Full-scale application was carried out in two-stage UHRAR reactors with volume 60 m3, HRT 40 d and OLR 60.1–104 kg COD/m3•d. The observation lasted for 32 d. The result from the batch experiment showed that the diluted samples achieved higher COD degradation and methane generation than the undiluted sample. The optimum condition occurred at pH 7, with theoretical methane yield of 7.5–10.64 L CH4 per kg COD. In turn, in full scale application, at day 32, COD removal was 71% (69.1 kg COD/d removed), with methane production was 36.72 m3 CH4/d. Methane production per COD removed was 0.53 m3 CH4/kg COD•d. Substrate modification and effluent recirculation could improve the substrate biodegradability, maintain microbial diversity and enrich nutrients in the reactor.
Rocznik
Strony
314--324
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • Centre of Industrial Pollution Prevention Technology, Jl.Ki Mangunsarkoro No. 6, Semarang, Central Java, Indonesia
  • Centre of Industrial Pollution Prevention Technology, Jl.Ki Mangunsarkoro No. 6, Semarang, Central Java, Indonesia
  • Centre of Industrial Pollution Prevention Technology, Jl.Ki Mangunsarkoro No. 6, Semarang, Central Java, Indonesia
  • Centre of Industrial Pollution Prevention Technology, Jl.Ki Mangunsarkoro No. 6, Semarang, Central Java, Indonesia
autor
  • Centre of Industrial Pollution Prevention Technology, Jl.Ki Mangunsarkoro No. 6, Semarang, Central Java, Indonesia
autor
  • Centre of Industrial Pollution Prevention Technology, Jl.Ki Mangunsarkoro No. 6, Semarang, Central Java, Indonesia
  • Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environment, Chinese Academy of Science, Urumqi, 830011, China
Bibliografia
  • 1. Cabrera-Díaz, A., Pereda-Reyes, I., Oliva-Merencio, D., Lebrero, R., Zaiat, M. 2017. Anaerobic Digestion of Sugarcane Vinasse Through a Methanogenic UASB Reactor Followed by a Packed Bed Reactor. Appl. Biochem. Biotechnol, 183, 1127–1145. https://doi.org/10.1007/s12010-017-2488-2
  • 2. Chen, Y., Cheng, J.J., Creamer, K.S. 2008. Inhibition of anaerobic digestion process: A review. Bioresour. Technol, 99, 4044–4064. https://doi.org/10.1016/j.biortech.2007.01.057
  • 3. Christofoletti, C.A., Escher, J.P., Correia, J.E., Marinho, J.F.U., Fontanetti, C.S., 2013. Sugarcane vinasse: Environmental implications of its use. Waste Manag, 33, 2752–2761. https://doi.org/10.1016/j.wasman.2013.09.005
  • 4. Dar, S.A., Kleerebezem, R., Stams, A.J.M., Kuenen, J.G., Muyzer, G., 2008. Competition and coexistence of sulfate-reducing bacteria, acetogens and methanogens in a lab-scale anaerobic bioreactor as affected by changing substrate to sulfate ratio. Appl. Microbiol. Biotechnol, 78, 1045–1055. https://doi.org/10.1007/s00253-008-1391-8
  • 5. Degueurce, A., Tomas, N., Le Roux, S., Martinez, J., Peu, P., 2016. Biotic and abiotic roles of leachate recirculation in batch mode solid-state anaerobic digestion of cattle manure. Bioresour. Technol, 200, 388–395. https://doi.org/10.1016/j.biortech.2015.10.060
  • 6. Del Nery, V., Alves, I., Zamariolli Damianovic, M.H.R., Pires, E.C., 2018. Hydraulic and organic rates applied to pilot scale UASB reactor for sugar cane vinasse degradation and biogas generation. Biomass and Bioenergy, 119, 411–417. https://doi.org/10.1016/j.biombioe.2018.10.002
  • 7. Djalma Nunes Ferraz Júnior, A., Koyama, M.H., de Araújo Júnior, M.M., Zaiat, M., 2016. Thermophilic anaerobic digestion of raw sugarcane vinasse. Renew. Energy, 89, 245–252. https://doi.org/10.1016/j.renene.2015.11.064
  • 8. Drtil, M., Bod, I., Herdov, B., 2002. The use of upflow anaerobic filter and AnSBR for wastewater treatment at ambient temperature 36, 1084–1088.
  • 9. Fuess, L.T., de Araújo Júnior, M.M., Garcia, M.L., Zaiat, M., 2017a. Designing full-scale biodigestion plants for the treatment of vinasse in sugarcane biorefineries: How phase separation and alkalinization impact biogas and electricity production costs? Chem. Eng. Res. Des, 119, 209–220. https://doi.org/10.1016/j.cherd.2017.01.023
  • 10. Fuess, L.T., dos Santos, G.M., Delforno, T.P., de Souza Moraes, B., da Silva, A.J., 2020. Biochemical butyrate production via dark fermentation as an energetically efficient alternative management approach for vinasse in sugarcane biorefineries. Renew. Energy, 158, 3–12. https://doi.org/10.1016/j.renene.2020.05.063
  • 11. Fuess, L.T., Garcia, M.L., 2015. Bioenergy from stillage anaerobic digestion to enhance the energy balance ratio of ethanol production. J. Environ. Manage, 162, 102–114. https://doi.org/10.1016/j.jenvman.2015.07.046
  • 12. Fuess, L.T., Kiyuna, L.S.M., Ferraz, A.D.N., Persinoti, G.F., Squina, F.M., Garcia, M.L., Zaiat, M., 2017b. Thermophilic two-phase anaerobic digestion using an innovative fixed-bed reactor for enhanced organic matter removal and bioenergy recovery from sugarcane vinasse. Appl. Energy, 189, 480–491. https://doi.org/10.1016/j.apenergy.2016.12.071
  • 13. Gharsallah, N., 1994. Influence of dilution and phase separation on the anaerobic digestion of olive mill wastewaters. Bioprocess Eng, 10, 29–34. https://doi.org/10.1007/BF00373532
  • 14. Harihastuti, N., Marlena, B., 2018. Bioenergy Potential Based on Vinasse from Ethanol Industrial Waste to Green Energy Sustainability. E3S Web Conf, 31, 2017–2019. https://doi.org/10.1051/e3sconf/20183102015
  • 15. Harihastuti, N., Marlena, B., Irnaning, N.H., Yuliasni, R., 2020. Decomposition process of stilage/vinasse organic compound from ethanol industry as renewable energy source, AIP Conf. Proc. 2197, 3–8. https://doi.org/10.1063/1.5140897
  • 16. Hickey, R.F., Switzenbaum, M.S., 1990. Behavior of Carbon Monoxide as a Trace Component of Anaerobic Digester Gases and Methanogenesis from Acetate. Environ. Sci. Technol, 24, 1642–1648. https://doi.org/10.1021/es00081a003
  • 17. Hwang, M.H., Jang, N.J., Hyun, S.H., Kim, I.S., 2004. Anaerobic bio-hydrogen production from ethanol fermentation: the role of pH. J. Biotechnol, 111, 297–309. https://doi.org/10.1016/j.jbiotec.2004.04.024
  • 18. Joppert, C.L., dos Santos, M.M., Costa, H.K.M., dos Santos, E.M., Moreira Simões, J.R., 2017. Energetic shift of sugarcane bagasse using biogas produced from sugarcane vinasse in Brazilian ethanol plants. Biomass and Bioenergy 107, 63–73. https://doi.org/10.1016/j.biombioe.2017.09.011
  • 19. Jung, J.Y., Lee, S.M., Shin, P.K., Chung, Y.C., 2000. Effect of pH on phase separated anaerobic digestion. Biotechnol. Bioprocess Eng, 5, 456–459. https://doi.org/10.1007/bf02931947
  • 20. Lalov, I.G., Krysteva, M.A., Phelouzat, J.L., 2001. Improvement of biogas production from vinasse via covalently immobilized methanogens. Bioresour. Technol, 79, 83–85. https://doi.org/10.1016/S0960-8524(01)00045-1
  • 21. Li, J., Li, B., Zhu, G., Ren, N., Bo, L., He, J., 2007. Hydrogen production from diluted molasses by anaerobic hydrogen producing bacteria in an anaerobic baffled reactor (ABR). Int. J. Hydrogen Energy, 32, 3274–3283. https://doi.org/10.1016/j.ijhydene.2007.04.023
  • 22. Lin, L., Li, Y., 2017. Sequential batch thermophilic solid-state anaerobic digestion of lignocellulosic biomass via recirculating digestate as inoculum – Part I: Reactor performance. Bioresour. Technol, 236, 186–193. https://doi.org/10.1016/j.biortech.2017.03.136
  • 23. Lukitawesa, Wikandari, R., Millati, R., Taherzadeh, M.J., Niklasson, C., 2018. Effect of effluent recirculation on biogas production using two-stage anaerobic digestion of citrus waste. Molecules, 23, 1–11. https://doi.org/10.3390/molecules23123380
  • 24. Ma, X., Yu, M., Yang, M., Zhang, S., Gao, M., Wu, C., Wang, Q., 2020. Effect of liquid digestate recirculation on the ethanol-type two-phase semicontinuous anaerobic digestion system of food waste. Bioresour. Technol, 313, 123534. https://doi.org/10.1016/j.biortech.2020.123534
  • 25. Madejón, E., López, R., Murillo, J.M., Cabrera, F., 2001. Agricultural use of three ( sugar-beet ) vinasse composts : effect on crops and chemical properties of a Cambisol soil in the Guadalquivir river valley (SW Spain), 84, 55–65.
  • 26. Mahajan, R., Chandel, S., Puniya, A.K., Goel, G., 2020. Effect of pretreatments on cellulosic composition and morphology of pine needle for possible utilization as substrate for anaerobic digestion. Biomass and Bioenergy, 141, 105705. https://doi.org/https://doi.org/10.1016/j.biombioe.2020.105705
  • 27. Marafon, A.C., Salomon, K.R., Amorim, E.L.C., Peiter, F.S., 2020. Use of sugarcane vinasse to biogas, bioenergy, and biofertilizer production, Sugarcane Biorefinery, Technology and Perspectives. Elsevier Inc. https://doi.org/10.1016/b978-0-12-814236-3.00010-x
  • 28. Moraes, B.S., Zaiat, M., Bonomi, A., 2015. Anaerobic digestion of vinasse from sugarcane ethanol production in Brazil: Challenges and perspectives. Renew. Sustain. Energy Rev. 44, 888–903. https://doi.org/10.1016/j.rser.2015.01.023
  • 29. Park, J.H., Kumar, G., Yun, Y.M., Kwon, J.C., Kim, S.H., 2018. Effect of feeding mode and dilution on the performance and microbial community population in anaerobic digestion of food waste. Bioresour. Technol. 248, 134–140. https://doi.org/10.1016/j.biortech.2017.07.025
  • 30. Parsaee, M., Kiani Deh Kiani, M., Karimi, K., 2019. A review of biogas production from sugarcane vinasse. Biomass and Bioenergy, 122, 117–125. https://doi.org/10.1016/j.biombioe.2019.01.034
  • 31. Reis, C.E.R., Hu, B., 2017. Vinasse from sugarcane ethanol production: Better treatment or better utilization? Front. Energy Res. 5, 1–7. https://doi.org/10.3389/fenrg.2017.00007
  • 32. Science, W., 2007. Co-composting of distillery and winery wastes with sewage sludge Co-composting of distillery and winery wastes with sewage sludge. https://doi.org/10.2166/wst.2007.488
  • 33. Souza, M.E., Fuzaro, G., Polegato, A.R., 2018. Thermophilic Anaerobic Digestion Of Vinasse In Pilot Plant UASB Reactor, Wat Sci Tech, 25, 213–222.
  • 34. Souza, M.E., Fuzaro, G., Polegato, A.R., 1992. Thermophilic anaerobic digestion of vinasse in pilot plant UASB reactor. Water Sci. Technol, 25, 213–222. https://doi.org/10.2166/wst.1992.0153
  • 35. Yuan, Y., Cheng, H., Chen, F., Zhang, Y., Xu, X., Huang, C., Chen, C., Liu, W., Ding, C., Li, Z., Chen, T., Wang, A., 2020. Enhanced methane production by alleviating sulfide inhibition with a microbial electrolysis coupled anaerobic digestion reactor. Environ. Int. 136, 105503. https://doi.org/10.1016/j.envint.2020.105503
  • 36. Yuliasni, R., Setyaningsih, N.I., Handayani, N.I., Budiarto, A., 2017. The performance of combined technology Upflow anaerobic reactor (UAR)-activated sludge (AS) for treating batik wastewater. Adv. Sci. Lett, 23, 2246–2250. https://doi.org/10.1166/asl.2017.8725
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-55555e78-9819-44fa-bbaf-ca731982b219
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.