PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of explosive maximum instantaneous charge on blasting environmental impact

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Our research looked at the effect of explosive maximum instantaneous charge on ground vibrations and noise levels during blasting operations at the Calaba limestone quarry in Nigeria. Vibrock (V9000) seismograph was used to take readings related to ground vibrations and noise generated during all blasting operations that took place in the quarry for a period of one year. The results obtained indicate that the average ground vibration readings fall between 0.25 mm/s to 3.6 mm/s and the average noise decibel generated during the blasting operations between 35 and 158 dB. An artificial neural network (ANN) model is developed in this study for the prediction of blast-induced ground vibration and noise level. The proposed ANN model was compared with existing empirical models and was found to give the highest prediction accuracy. It was revealed that both noises generated and ground vibrations during all blasting operations increase with an increase in explosive maximum instantaneous charge. Additionally, the measuring equipment distance from the blast site was also revealed to have a negative correlation with noise generated and ground vibrations.
Rocznik
Strony
344--357
Opis fizyczny
Bibliogr. 49 poz.
Twórcy
  • Federal University of Technology Akure, Mining Engineering, Nigeria
  • Federal University of Technology Akure, Mining Engineering, Nigeria
  • Federal University of Technology Akure, Mining Engineering, Nigeria
Bibliografia
  • [1] Kanchibotla SS, Valery W, Morrell S. Modelling fines in blast fragmentation and its impact on crushing and grinding. In: Explo ‘99-A conference on rock breaking. Kalgoorlie, Australia: The Australasian Institute of Mining and Metallurgy; 1999, November. p. 137-44.
  • [2] Jhanwar JC. Theory and practice of air-deck blasting in mines and surface excavations: a review. Geotech Geol Eng 2011;29(5):651-63.
  • [3] Taiwo BO. Effect of charge load proportion and blast controllable factor design on blast fragment size distribution. J Brilliant Eng 2022;3:4658.
  • [4] Kumar R, Choudhury D, Bhargava K. Determination of blast-induced ground vibration equations for rocks using mechanical and geological properties. J Rock Mech Geotech Eng 2016;8(3):341-9.
  • [5] Choudhary BS, Agrawal A. Minimization of blast-induced hazards and efficient utilization of blast energy by implementing a novel stemming plug system for eco-friendly blasting in open pit mines. Nat Resour Res 2022;31(6):3393-410.
  • [6] Agrawal A, Choudhary BS, Murthy VMSR, Murmu S. Impact of bedding planes, delay interval and firing orientation on blast induced ground vibration in production blasting with controlling strategies. Measurement 2022;202:111887.
  • [7] Deniz V, Deniz OT. The environmental effects of the air shock generated by blasting. Mugla J Sci and Technology 2017;3(2):166-70.
  • [8] Ainalis D, Kaufmann O, Tshibangu JP, Verlinden O, Kouroussis G. Assessing blast source pressure modelling approaches for the numerical simulation of ground vibrations. In: Proceedings of the 23rd international congress on sound and vibration; 2016. Athens (Greece), July 10-14, 2016.
  • [9] Baranov EG, Bondarenko IF, Vedin AT. Mining and industrial applications of low density explosives. CRC Press; 1996.
  • [10] Mortazavi A. Using discontinuous deformation analysis. Doctoral dissertation, Queen's University Kingston; 1999.
  • [11] Cullis IG. Blast waves and how they interact with structures. BMJ Military Health 2001;147(1):16-26.
  • [12] Resende R, Lamas L, Lemos J, Calçada R. Micromechanical modelling of stress waves in rock and rock fractures. Rock Mech Rock Eng 2010;43(6):741-61.
  • [13] Dumakor-Dupey NK, Arya S, Jha A. Advances in blast-induced impact prediction - a review of machine learning applications. Minerals 2021;11(6):601.
  • [14] Jaffar N, Abdul-Tharim AH, Mohd-Kamar IF, Lop NS. A literature review of ergonomics risk factors in construction industry. Procedia Eng 2011;20:89-97.
  • [15] Cleary PW, Sawley ML. DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge. Appl Math Model 2002;26(2):89-111.
  • [16] Michelsen A. Physical aspects of vibrational communication. In: Studying vibrational communication. Berlin, Heidelberg: Springer; 2014. p. 199-213.
  • [17] Bansah KJ, Kansake BA, Dumakor-Dupey NK. Baseline structural assessment: mechanism for mitigating potential conflicts due to blast vibration. In: 4th UMaT biennial international mining and mineral conference; 2016. p. 42-8.
  • [18] Daz J, Ruiz M, Sanchez-Pastor PS, Romero P. Urban seismology: on the origin of earth vibrations within a city. Sci Rep 2017;7(1):1-11.
  • [19] Valdivia C, Vega M, Scherpenisse CR, Adamson WR. Vibration simulation method to control stability in the northeast corner of escondia mine. Int. J. Blast. Fragment. 2003;7: 63-78.
  • [20] Rossmanith HP, Hochholdinger-Arsic V, Uenishi K. Understanding size and boundary effects in scaled model blastplane problems. Int. J. Blast.
  • [21] Bhandari S, Balkema AA. Engineering rock blasting operations. Rotterdam: Netherlands/Brookfield, USA Publishers; 1997. p. 400.
  • [22] Banadaki MD, Mohanty B. Numerical simulation of stress wave induced fractures in rock. Int J Impact Eng 2012;40: 16-25.
  • [23] Alessandro G, Marilena C, Vladisla K. An assessment of blasting vibrations: a case study on quarry operation. Am J Environ Sci 2009;5(4):468-74.
  • [24] Mpofu M, Ngobese S, Maphalala B, Roberts D, Khan S. The influence of stemming practice on ground vibration and air blast. J S Afr Inst Min Metall 2021;121(1):1-10.
  • [25] Ranjan K, Deepankar C, Kapilesh B. Determination of blast- induced ground vibration equations for rocks using mechanical and geological properties. J Rock Mech Geotech Eng 2016;8:341-9.
  • [26] Roy MP, Singh PK, Sarim M, Shekhawat LS. Blast design and vibration control at an underground metal mine for the safety of surface structures. Int J Rock Mech Min Sci 2016;83: 107-15.
  • [27] Cheng R, Zhou Z, Chen W, Hao H. Effects of axial air deck on blast-induced ground vibration. Rock Mech Rock Eng 2022;55(2):1037-53.
  • [28] Trivedi R, Singh TN, Mudgal K, Gupta N. Application of artificial neural network for blast performance evaluation. Int J Renew Energy Technol 2014;3(5):564-74.
  • [29] Ragam P, Nimaje DS. Evaluation and prediction of blast- induced peak particle velocity using artificial neural network: a case study. Noise Vib Worldw 2018;49(3):111-9.
  • [30] Lawal AI. An artificial neural network-based mathematical model for the prediction of blast-induced ground vibration in granite quarries in Ibadan, Oyo State, Nigeria. Scientific African 2020;8:e00413.
  • [31] Zhu C, Xu Y, Wu Y, He M, Zhu C, Meng Q, et al. A hybrid artificial bee colony algorithm and support vector machine for predicting blast-induced ground vibration. Earthq Eng Eng Vib 2022;21(4):861-76.
  • [32] Qiu Y, Zhou J, Khandelwal M, Yang H, Yang P, Li C. Performance evaluation of hybrid WOA-XGBoost, GWO- XGBoost and BO-XGBoost models to predict blast-induced ground vibration. Eng Comput 2022;38(5):4145-62.
  • [33] Etikan I, Bala K. Sampling and sampling methods. Biom Biostat Int J 2017;5(6):215-7. https://doi.org/10.15406/bbij.2017.05.00149.
  • [34] ISRM. International society for rock Mechanics. Rock characterization, testing and monitoring. In: Brown ET, editor. ISRM suggested methods. Commission on testing methods, international society for rock Mechanics (ISRM). Oxford, UK: Pergamon Press; 1981. p. 75-105.
  • [35] Stagg MS, Engler AJ. Measurement of blast-induced ground vibrations and seismograph calibrationvol. 8506. US Department of the Interior, Bureau of Mines; 1980.
  • [36] Lawal AI, Aladejare AE, Onifade M, Bada S, Idris MA. Predictions of elemental composition of coal and biomass from their proximate analyses using ANFIS, ANN and MLR. Int J Coal Science and Technology 2021;8(1):124-40. https://doi.org/10.1007/s40789-020-00346-9.
  • [37] Maerz NH. Image sampling techniques and requirements for automated image analysis of rock fragments. In: Proceedings of ISRM/fragblast 5 workshop and short course on fragmentation measurement. Montreal: A. A. Balkema; 1996.
  • [38] Taiwo BO. Improvement of small-scale dolomite blasting productivity: comparison of existing empirical models with image analysis software and artificial neural network models. Journal of Mining and Environment 2022;13(3):627-41.
  • [39] Bieniawski ZT. Engineering rock mass classifications. In: A complete manual for engineers and geologists in mining, civil and petroleum engineering. Toronto: John Wiley & Sons; 1989. Bishop, A. (1955). The Use of the Slip Circle in the Stability Analysis of Slopes. Geotechnique 5.1: 7-17.
  • [40] Lefebvre R, Hockley D, Smolensky J, Gélinas P. Multiphase transfer processes in waste rock piles producing acid mine drainage: 1: conceptual model and system characterization. J Contam Hydrol 2001;52(1-4):137-64.
  • [41] Afeni TB, Osasan SK. Assessment of noise and ground vibration induced during blasting operations in an open pit mine - a case study on Ewekoro limestone quarry, Nigeria. Min Sci Technol 2009;19(4):420-4.
  • [42] Nguyen VD, Lee CW, Bui XN, Nguyen H, Tran QH, Long NQ, et al. Evaluating the air flow and gas dispersion behavior in a deep open-pit mine based on monitoring and cfd analysis: a case study at the coc sau open-pit coal mine (Vietnam). In: Proceedings of the international conference on innovations for sustainable and responsible mining. Cham: Springer; 2021. p. 224-44.
  • [43] Yang J, Sun J, Jia Y, Yao Y. Energy generation and attenuation of blast-induced seismic waves under in situ stress conditions. Appl Sci 2022;12(18):9146.
  • [44] Zhi-qiang Yin Z, Ze-di W, Guang-ming Z, Ma Hai-feng Z, Rui-min F. Assessment of blasting-induced ground vibration in an open-pit mine under different rock properties. Adv Civ Eng 2018;2018. https://doi.org/10.1155/2018/4603687. Article ID 4603687, 10 pages.
  • [45] Mesec J, Kovac I, Soldo B. Estimation of particle velocity based on blast event measurements at different rock unit. Soil Dynam Earthq Eng 2010;30(10):1004-9.
  • [46] Armaghani DJ, Hajihassani M, Mohamad ET, Marto A, Noorani SA. Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization. Arabian J Geosci 2014;7(12): 5383-96.
  • [47] McKenzie C. Quarry blast monitoring: technical and environmental perspectives. Quarry Manag 1990;17:23-34.
  • [48] Tiile RN. Artificial neural network approach to predict blast- induced ground vibration, airblast and rock fragmentation. Missouri University of Science and Technology; 2016.
  • [49] Nishimoto N, Yamamoto Y, Yamagata S, Igarashi T, Tomiyama S. Acid mine drainage sources and impact on groundwater at the osarizawa mine, Japan. Minerals 2021; 11(9):998.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5552389a-4f6b-4d57-8d2e-c2492d36df84
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.