PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Conversion Energy from the Movement of the Solar System Through Universal Pressure: Reflections in Seismic Events and Global Temperatures

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The velocity (~242 km•s-1) of the Solar System around the galactic center within the universal pressure (~10-10 Pascal) produces energies within the earth’s volume that is equivalent to that released by the sum of all earthquakes per unit time. The available energy within the earth and solar volume from the expected spatial variations of this pressure along this perimeter, which requires about 250 million years to traverse, can accommodate the increased geomagnetic activity from the expanding solar corona over the last approximately 100 years as well as the increase in global warming. Inferences of a varying structure of space that may explain the periodicity and range in solar cycles as well as anomalous minimums (such as the Maunder phenomenon) suggest a central galactic singularity with spatial ripples exhibiting peak-to-peak troughs that approximate the earth’s circumference and frequencies in the order of 7 to 8 Hz. The precise velocity-universal pressure flux density may also explain the millilux-range magnitude of the earth’s night (air) glow. These results and the application of these concepts indicate that origins of seismicity, slow drifts in the intensity of geomagnetic activity, and global warming (and cooling) trends are products of differential interactions with quantitative fluctuations in sub-matter space and that the subtle variations encountered as the Solar System moves along this 1021 m perimeter may be more significant than previously assumed.
Rocznik
Strony
78--86
Opis fizyczny
Bibliogr. 21 poz., wz.
Twórcy
  • Laurentian University, Sudbury, Ontario P3E 2C6, Canada
Bibliografia
  • [1] S. P. Wyatt, Principles of Astronomy, Allyn and Bacon, Boston, 1964.
  • [2] M. A. Persinger, International Letters of Chemistry, Physics and Astronomy 11 (2014) 18-23.
  • [3] T. Borowski, International Letters of Chemistry, Physics and Astronomy 11 (2013) 44-53.
  • [4] M. A. Persinger, International Journal of Astronomy and Astrophysics 2 (2012) 125-128.
  • [5] M.A. Persinger, Journal of Physics, Astrophysics and Physical Cosmology 3 (2009) 1-3.
  • [6] D. A. E. Vares, M. A. Persinger, International Journal of Geosciences 4 (2013) 1321-1325.
  • [7] H. E. Puthoff, Physical Review A 39 (1989) 2333-2342.
  • [8] M. Bordag, U. Mohideen, V. M. Mostepanenko, Physics Reports 353 (2001) 1-205.
  • [9] M. A. El-Borie, S. S. Al-Thoyaib, International Journal of Physical Sciences 1 (2006) 67-74.
  • [10] K. Lassen, E. Christensen, Journal of Atmospheric and Terrestrial Physics 57 (1995) 835-839.
  • [11] M. A. Persinger, International Journal of Physical Sciences 4 (2009) 44-46.
  • [12] M. Lockwood, R. Stamper, M. D. Wild, Nature 399 (1999) 437-439.
  • [13] L. K. Fenton, P. E.Geissler, R. M. Haberie, Nature 446 (2007) 646-649.
  • [14] G. Woodbury, Physical Chemistry Brooks/Cole, Pacific Grove, 1997.
  • [15] F. M. White, Heat and Mass Transfer Addison-Wesley, Reading (Mass), 1991.
  • [16] I. Nicholson, The Sun, Rand McNally, Chicago, 1982.
  • [17] D. A. Gurnett, W. S. Kurth, L. F. Bulaga, N. F. Ness, Science 341 (2013) 1489-1492.
  • [18] E. R. Dewey, Cycles, Foundation for the Study of Cycles, Inc., Pittsburg (Penn), 1970.
  • [19] M. Mikulecky, Neuroendocrine Letters 28 (2007) 749-756.
  • [20] D. C. Van Essen, H. A. Drury, Journal of Neuroscience, 17 (1997) 7079-7102.
  • [21] M. A. Persinger, S. A. Koren, G. F. Lafreniere, NeuroQuantology 6 (2008) 262-271.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-555236fe-a1c3-4a58-b52f-0c3baf5a14d3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.