Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
To illustrate the vibration characteristics of a rotating pipe in flow, experiments were conducted for a pipe in flow, a rotating pipe in still water and a rotating pipe in flow. For the pipe in flow without rotation, the trajectory diagram is ‘8’ shaped. For the rotating pipe in still water, a multiple frequency component was induced, and a ‘positive direction whirl’ was found. For the flow and rotation, at a flow velocity of 0.46 m/s, the vibration is dominated by the combination of flow and rotation. With an increase in rotating frequency, the trajectory of the rotating pipe varies from an ‘8’ shape to a circular shape and the ‘reverse direction whirl’ is induced, which is different from ‘positive direction’ in still water. The vibration frequency ratio increases uniformly with flow velocity. At a flow velocity of 1.02 m/s, at which the frequency is close to the theoretical natural frequency, the vibration frequency ratio is f*≈1. Predominantly governed by vortex-induced vibration (VIV), the vibration behavior of a rotating pipe subjected to fluid flow conditions has been found to exhibit complete vanishing of whirl. The vibration characteristics of a rotating pipe in flow are studied by the experiments which is benefit for structural drilling design.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
65--77
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan, China
autor
- Green & Smart River-Sea-Going Ship Cruise and Yacht Research Center, Wuhan University of Technology, Wuhan, China
autor
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan, China
autor
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan, China
autor
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan, China
autor
- Department of Ocean Technology, Policy and Environment, The University of Tokyo, Tokyo, Japan
Bibliografia
- 1. M. J. Moharrami, C. de Arruda Martins, and H. Shiri, “Nonlinear integrated dynamic analysis of drill strings under stick-slip vibration,” Applied Ocean Research, vol. 108, p. 102521, 2021. doi:https://doi.org/10.1016/j. apor.2020.102521.
- 2. R. Wang, X. Liu, G. Song, and S. Zhou, “Non-Linear Dynamic Analysis of Drill String System with FluidStructure Interaction,” Applied Sciences, vol. 11, p. 9047, 2021. doi:https://doi.org/10.3390/app11199047.
- 3. M. Stosiak, M. Zawiślak, and B. Nishta, “Studies of resistances of natural liquid flow in helical and curved pipes,” in Proceedings of the 14th International Scientific Conference: Computer Aided Engineering, pp. 759-766, 2019. dio:https://doi.org/10.2478/pomr-2018-0103.
- 4. A. Ghasemloonia, D. G. Rideout, and S. D. Butt, “A review of drillstring vibration modeling and suppression methods,” Journal of Petroleum Science and Engineering, vol. 131, pp. 150-164, 2015. doi:https://doi.org/10.1016/j. petrol.2015.04.030.
- 5. F. Liang, X.-D. Yang, W. Zhang, and Y.-J. Qian, “Vibrations in 3D space of a spinning supported pipe exposed to internal and external annular flows,” Journal of Fluids and Structures, vol. 87, pp. 247-262, 2019. doi:https://doi. org/10.1016/j.jfluidstructs.2019.04.002.
- 6. F. Wang and N. Chen, “Dynamic response analysis of drill pipe considering horizontal movement of platform during installation of subsea production tree,” Polish Maritime Research, 2020. doi:https://doi.org/10.2478/ pomr-2020-0043.
- 7. G. Gao, Y. Cui, and X. Qiu, “Prediction of vortex-induced vibration response of deep sea top-tensioned riser in sheared flow considering parametric excitations,” Polish Maritime Research, 2020. doi:https://doi.org/10.2478/ pomr-2020-0026.
- 8. P. Catalano, M. Wang, G. Iaccarino, and P. Moin, “Numerical simulation of the flow around a circular cylinder at high Reynolds numbers,” International Journal of Heat and Fluid Flow, vol. 24, pp. 463-469, 2003. doi:https://doi. org/10.1016/S0142-727X(03)00061-4.
- 9. D. Stojković, M. Breuer, and F. Durst, “Effect of high rotation rates on the laminar flow around a circular cylinder,” Physics of Fluids, vol. 14, pp. 3160-3178, 2002. doi:https://doi.org/10.1063/1.1492811.
- 10. M. H. Chou, “Numerical study of vortex shedding from a rotating cylinder immersed in a uniform flow field,” International Journal for Numerical Methods in Fluids, vol. 32, pp. 545-567, 2000. doi:https://doi. org/10.1002/(SICI)1097-0363(20000315)32:53.0.CO;2-2.
- 11. R. K. Ray and J. C. Kalita, “Higher-order-compact simulation of unsteady flow past a rotating cylinder at moderate Reynolds numbers,” Computational and Applied Mathematics, vol. 35, pp. 219-250, 2016. doi:https://doi. org/10.1007/s40314-014-0191-2.
- 12. M. J. Ezadi Yazdi, A. S. Rad, and A. B. Khoshnevis, “Features of the flow over a rotating circular cylinder at different spin ratios and Reynolds numbers: Experimental and numerical study,” The European Physical Journal Plus, vol. 134, pp. 1-21, 2019. doi:https://doi.org/10.1140/epjp/ i2019-12508-3.
- 13. Y. Chew, M. Cheng, and S. Luo, “A numerical study of flow past a rotating circular cylinder using a hybrid vortex scheme,” Journal of Fluid Mechanics, vol. 299, pp. 35-71, 1995. doi:https://doi.org/10.1017/S0022112095003417.
- 14. D. Stojković, P. Schön, M. Breuer, and F. Durst, “On the new vortex shedding mode past a rotating circular cylinder,” Physics of Fluids, vol. 15, pp. 1257-1260, 2003. doi:https:// doi.org/10.1063/1.1562940.
- 15. J. O. Pralits, L. Brandt, and F. Giannetti, “Instability and sensitivity of the flow around a rotating circular cylinder,” Journal of Fluid Mechanics, vol. 650, pp. 513-536, 2010. doi:https://doi.org/10.1017/S0022112009993764.
- 16. J. O. Pralits, F. Giannetti, and L. Brandt, “Threedimensional instability of the flow around a rotating circular cylinder,” Journal of Fluid Mechanics, vol. 730, pp. 5-18, 2013. doi:https://doi.org/10.1017/jfm.2013.334.
- 17. J. Meena and S. Mittal, “Three-dimensional flow past a rotating cylinder,” Journal of Fluid Mechanics, vol. 766, pp. 28-53, 2015. doi:https://doi.org/10.1017/jfm.2015.6.
- 18. L. Ding, H. Kong, Q. Zou, J. Wang, and L. Zhang, “2-DOF vortex-induced vibration of rotating circular cylinder in shear flow,” Ocean Engineering, vol. 249, p. 111003, 2022. doi:https://doi.org/10.1016/j.oceaneng.2022.111003.
- 19. Q. Zou, L. Ding, H. Wang, J. Wang, and L. Zhang, “Twodegree-of-freedom flow-induced vibration of a rotating circular cylinder,” Ocean Engineering, vol. 191, p. 106505, 2019. doi:https://doi.org/10.1016/j.oceaneng.2019.106505.
- 20. Q. Zou, L. Ding, R. Zou, H. Kong, H. Wang, and L. Zhang, “Two-degree-of-freedom flow-induced vibration of two circular cylinders with constraint for different arrangements,” Ocean Engineering, vol. 225, p. 108806, 2021. doi:https://doi.org/10.1016/j.oceaneng.2021.108806.
- 21. A. Munir, M. Zhao, H. Wu, L. Lu, and D. Ning, “Threedimensional numerical investigation of vortex-induced vibration of a rotating circular cylinder in uniform flow,” Physics of Fluids, vol. 30, p. 053602, 2018. doi:https://doi. org/10.1063/1.5025238.
- 22. A. Munir, M. Zhao, H. Wu, and L. Lu, “Numerical investigation of wake flow regimes behind a high-speed rotating circular cylinder in steady flow,” Journal of Fluid Mechanics, vol. 878, pp. 875-906, 2019. doi:https://doi. org/10.1017/jfm.2019.677.
- 23. T. Tang, H. Zhu, J. Song, B. Ma, and T. Zhou, “The state-ofthe-art review on the wake alteration of a rotating cylinder and the associated interaction with flow-induced vibration,” Ocean Engineering, vol. 254, p. 111340, 2022. doi:https:// doi.org/10.1016/j.oceaneng.2022.111340.
- 24. J. Zhao, D. L. Jacono, J. Sheridan, K. Hourigan, and M. C. Thompson, “Experimental investigation of in-line flowinduced vibration of a rotating circular cylinder,” Journal of Fluid Mechanics, vol. 847, pp. 664-699, 2018. doi:https:// doi.org/10.1017/jfm.2018.357.
- 25. K. W. L. Wong, J. Zhao, D. L. Jacono, M. C. Thompson, and J. Sheridan, “Experimental investigation of flow-induced vibration of a sinusoidally rotating circular cylinder,” Journal of Fluid Mechanics, vol. 848, pp. 430-466, 2018. doi:https://doi.org/10.1017/jfm.2018.379.
- 26. R. Bourguet, “Flow-induced vibrations of a rotating cylinder in an arbitrary direction,” Journal of Fluid Mechanics, vol. 860, pp. 739-766, 2019. doi:https://doi.org/10.1017/ jfm.2018.896.
- 27. R. Bourguet, “Two-degree-of-freedom flow-induced vibrations of a rotating cylinder,” Journal of Fluid Mechanics, vol. 897, 2020. doi:https://doi.org/10.1017/ jfm.2020.403.
- 28. R. Bourguet and D. L. Jacono, “Flow-induced vibrations of a rotating cylinder,” Journal of Fluid Mechanics, vol. 740, pp. 342-380, 2014. doi:https://doi.org/10.1017/jfm.2013.665.
- 29. K. H. Aronsen, “An experimental investigation of in-line and combined in-line and cross-flow vortex induced vibrations,” 2007. doi:10.1115/1.4038350.
- 30. W. Chen, C.-k. Rheem, X. Li, and Y. Lin, “Investigation of the motion characteristics for a spring-mounted rotating cylinder in flow,” Journal of Marine Science and Technology, vol. 25, pp. 1228-1245, 2020. doi:https://doi. org/10.1007/s00773-020-00711-y.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-554f8922-e003-4009-a97a-607c45800cd1