PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optical gradient force of cosh-Gaussian with sine-azimuthal and half-space phase modulation

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The optical gradient force distributions in focal plane of cosh-Gaussian beams with sine-azimuthal variation wavefront and half space phase modulation were investigated. Results show that optical gradient force distributions can be affected considerably by the phase retardation of half-space phase modulation, of a phase parameter that indicates the phase change frequency on an increasing azimuthal angle, and beam parameters in cosh terms of the incident beams. Many gradient force patterns occur, including cross-shape, multiple optical trap arrays, multiple-trap wheel, and many kinds of gradient force lines and curves. Symmetry of the whole gradient force pattern can also be altered remarkably. Above results may find wide applications in optical trapping systems.
Czasopismo
Rocznik
Strony
719--730
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
autor
  • Electronics & Information College, Hangzhou Dianzi University, Hangzhou 310018, China
autor
  • Electronics & Information College, Hangzhou Dianzi University, Hangzhou 310018, China
  • Key Laboratory of RF Circuit and System (Hangzhou Dianzi University), Ministry of Education, Hangzhou 310018, China
autor
  • China Jiliang University, Hangzhou 310018, China
autor
  • Electronics & Information College, Hangzhou Dianzi University, Hangzhou 310018, China
autor
  • Electronics & Information College, Hangzhou Dianzi University, Hangzhou 310018, China
autor
  • Electronics & Information College, Hangzhou Dianzi University, Hangzhou 310018, China
Bibliografia
  • [1] POVINELLI M.L., LONCAR M., IBANESCU M., SMYTHE E.J., JOHNSON S.G., CAPASSO F., JOANNOPOULOS J.D., Evanescent-wave bonding between optical waveguides, Optics Letters 30(22), 2005, pp. 3042–3044.
  • [2] LI M., PERNICE W.H.P., XIONG C., BAEHR-JONES T., HOCHBERG M., TANG H.X., Harnessing optical forces in integrated photonic circuits, Nature 456, 2008, pp. 480–484.
  • [3] OSKOOI A., FAVUZZI P.A., KAWAKAMI Y., NODA S., Tailoring repulsive optical forces in nanophotonic waveguides, Optics Letters 36(23), 2011, pp. 4638–4640.
  • [4] MACDONALD M.P., PATERSON L., VOLKE-SEPULVEDA K., ARLT J., SIBBETT W., DHOLAKIA K., Creation and manipulation of three-dimensional optically trapped structures, Science 296(5570), 2002, pp. 1101–1103.
  • [5] GARCES-CHAVES V., MCGLOIN D., MELVILLE H., SIBBETT W., DHOLAKIA K., Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam, Nature 419, 2002, pp. 145–147.
  • [6] GRIER D.G., A revolution in optical manipulation, Nature 424, 2003, pp. 810–816.
  • [7] MACDONALD M.P., SPALDING G.C., DHOLAKIA K., Microfluidic sorting in an optical lattice, Nature 426, 2003, pp. 421–424.
  • [8] FRIESE M.E.J., NIEMINEN T.A., HECKENBERG N.R., RUBINSZTEIN-DUNLOP H., Optical alignment and spinning of laser-trapped microscopic particles, Nature 394, 1998, pp. 348–350.
  • [9] PATERSON L., MACDONALD M.P., ARLT J., SIBBETT W., BRYANT P.E., DHOLAKIA K., Controlled rotation of optically trapped microscopic particles, Science 292(5518), 2001, pp. 912–914.
  • [10] LESTER, M., ARIAS-GONZALEZ J.R., NIETO-VESPERINAS M., Fundamentals and model of photonic--force microscopy, Optics Letters 26(10), 2001, pp. 707–709.
  • [11] WANG M.D., SCHNITZER M.J., YIN H., LANDICK R., GELLES J., BLOCK S.M., Force and velocity measured for single molecules of RNA polymerase, Science 282(5390), 1998, pp. 902–907.
  • [12] VISSCHER K., BRAKENHOFF G.J., Theoretical study of optically induced forces on spherical particles in a single beam trap I: Rayleigh scatterers, Optik 89, 1992, pp. 174–180.
  • [13] TSUTSUI H., HO C.-M., Cell separation by non-inertial force fields in microfluidic systems, Mechanics Research Communications 36(1), 2009, pp. 92–103.
  • [14] KLIMOV V.V., SEKATSKII S.K., DIETLER G., Laser nanotraps and nanotweezers for cold atoms: 3D gradient dipole force trap in the vicinity of scanning near-field optical microscope tip, Optics Communications 259(2), 2006, pp. 883–887.
  • [15] GAO X., ZHOU F., XU W., GAN F., Gradient force pattern, focal shift, and focal switch in an apodized optical system, Optik 116(3), 2005, pp. 99–106.
  • [16] LI J., ZHUANG S., HUANG C., Gradient force evolution of Gaussian beam induced by a phase plate, Optics and Lasers in Engineering 46(8), 2008, pp. 595–600.
  • [17] FONG K.Y., PERNICE W.H.P., LI M., TANG H.X., Tunable optical coupler controlled by optical gradient forces, Optics Express 19(16), 2011, pp. 15098–15108.
  • [18] LÜ B., ZHANG B., MA H., Beam-propagation factor and mode-coherence coefficients of hyperbolic--cosine Gaussian beams, Optics Letters 24(10), 1999, pp. 640–642.
  • [19] EYYUBOGLU H.T., BAYKAL Y., Average intensity and spreading of cosh-Gaussian laser beams in the turbulent atmosphere, Applied Optics 44(6), 2005, pp. 976–983.
  • [20] HRICHA Z., BELAFHAL A., Focusing properties and focal shift in hyperbolic-cosine-Gaussian beams, Optics Communications 253(4–6), 2005, pp. 242–249.
  • [21] GAO X., Focusing properties of the hyperbolic-cosine-Gaussian beam induced by phase plate, Physics Letters A 360(2), 2006, pp. 330–335.
  • [22] CHU X., NI Y., ZHOU G., Propagation of cosh-Gaussian beams diffracted by a circular aperture in turbulent atmosphere, Applied Physics B 87(3), 2007, pp. 547–552.
  • [23] DONG X., ZHAN Q., GAO X., GENG T., GUO H., ZHUANG S., Hyperbolic-cosine-Gaussian beam with sine-azimuthal variation wavefront, Optik 123(21), 2012, pp. 1901–1906.
  • [24] PATIL S.D., NAVARE S.T., TAKALE M.V., DONGARE M.B., Self-focusing of cosh-Gaussian laser beams in a parabolic medium with linear absorption, Optics and Lasers in Engineering 47(5), 2009, pp. 604–606.
  • [25] PATIL S.D., TAKALE M.V., NAVARE S.T., FULARI V.J., DONGARE M.B., Relativistic self-focusing of cosh-Gaussian laser beams in a plasma, Optics and Laser Technology 44(2), 2012, pp. 314–317.
  • [26] GAO X., WANG J., GU H., HU S., Focusing of hyperbolic-cosine-Gaussian beam with a non-spiral vortex, Optik 120(5), 2009, pp. 201–206.
  • [27] GAO X., ZHAN Q., LI J., HU S., WANG J., ZHUANG S., Dark focal spot shaping of hyperbolic-cosine--Gaussian beam, Journal of the Optical Society of America B 27(4), 2010, pp. 696–702.
  • [28] GAO X., WANG Q., ZHAN Q., YUN M., GUO H., ZHUANG S., Focal patterns of higher order hyperbolic--cosine-Gaussian beam with one optical vortex, Optical and Quantum Electronics 42(6–7), 2011, pp. 369–380.
  • [29] LIAN X., LÜ B., Phase singularities of nonparaxial cosh-Gaussian vortex beams diffracted by a rectangular aperture, Optics and Laser Technology 43(7), 2011, pp. 1264–1269.
  • [30] GAO X., LI Z., WANG J., SUN L., ZHUANG S., Tunable gradient force of hyperbolic-cosine-Gaussian beam with vortices, Optics and Lasers in Engineering 48(7–8), 2010, pp. 766–773.
  • [31] GU M., Advanced Optical Imaging Theory, Springer, Heidelberg, 2000.
  • [32] GANIC, D. GAN X., GU M., Focusing of doughnut laser beams by a high numerical-aperture objective in free space, Optics Express 11(21), 2003, pp. 2747–2752.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-554eff68-2f70-421e-8c3e-f79f94a7ada3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.