Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Energy efficiency is a global need to decrease net emissions and optimise the use of renewable energy sources. Ongoing research focuses on optimizing the use of renewable energy resources to maximize their consumption. Fuel cells, which utilise water to generate electricity, are among these renewable energy resources. Nevertheless, as previously said, there is ongoing research focused on optimising the synthesis of hydrogen and the extraction of voltage and current. In this study, we present the utilisation of sodium hydroxide (NaOH) in the extraction of hydrogen and silica nanoparticles for the enhancement of power values. The experiment clearly demonstrates that using a 50% NaOH solution resulted in the production of about 5.602 litres of hydrogen gas. Furthermore, the molar percentage of hydrogen in the final product was determined to be 85.74%. The gas chromatography analysis findings indicate that the product contains 81.58% hydrogen, 11.62% nitrogen, and 0.04% carbon dioxide. The electrical efficiency achieved is 86% with a heat loss of 13.96%. In addition, the research included the introduction of silica nanoparticles into the water. It was noted that this led to an increase in power density when the relative humidity was about 70%. The study also revealed that these nanoparticles had the potential to boost fuel cell performance.
Wydawca
Rocznik
Tom
Strony
413--420
Opis fizyczny
Bibliogr. 29 poz., fig., tab.
Twórcy
autor
- Department of EECE, Gitam Deemed to be University, Vizag, A.P, India
autor
- Department of EECE, Gitam Deemed to be University, Vizag, A.P, India
Bibliografia
- 1. Gayen D., Chatterjee R. Roy S. A review on environmental impacts of renewable energy for sustainable development. Int. J. Environ. Sci. Technol. 2024; 21: 5285–5310. https://doi.org/10.1007/ s13762-023-05380-z
- 2. Wilberforce T., Olabi A., Sayed E.T., Mahmoud M., Alami A.H., Abdelkareem M.A. The state of renewable energy source envelopes in urban areas. International Journal of Thermofluids, 2024; 21: 100581. https://doi.org/10.1016/j.ijft.2024.100581
- 3. Husain A.M., Hasan M.M., Khan Z.A., Asjad M. A robust decision-making approach for the selection of an optimal renewable energy source in India. Energy Conversion and Management, 2024; 301 117989. https://doi.org/10.1016/j.enconman.2023.117989
- 4. Manoo M.U., Shaikh F., Kumar L., Arıcı M. Comparative techno-economic analysis of various standalone and grid connected (solar/wind/fuel cell) renewable energy systems. International Journal of Hydrogen Energy, 2024; 52: 397–414. https://doi. org/10.1016/j.ijhydene.2023.05.258
- 5. Hou X., Sun R., Huang J., Geng W., Li X., Wang L., Zhang X. Energy, economic, and environmental analysis: A study of operational strategies for combined heat and power system based on PEM fuel cell in the East China region. Renewable Energy, 2024; 223: 120023. https://doi.org/10.1016/j. renene.2024.120023
- 6. Asghar R., Hassan S., Yaqoob Y. A comprehensive overview of wet chemistry methodologies and their application in the fabrication of materials for PEM fuel cell. International Journal of Hydrogen Energy, 2024; 58: 1190–1203. https://doi.org/10.1016/j. ijhydene.2024.01.289
- 7. Aigbe U.O., Osibote O.A. Green synthesis of metal oxide nanoparticles, and their various applications. Journal of Hazardous Materials Advances, 2024; 13: 100401. https://doi.org/10.1016/j. hazadv.2024.100401
- 8. Jamalpour S., Shamsabadi A., Arab K., Tohidian M., Tamsilian Y., Hooshyari K., Rahmani S. Two-dimensional nanomaterials-based polymer nanocomposites for fuel cell applications, 2024; 465–508. https://doi.org/10.1002/9781119905110.ch13
- 9. Akram M., Rani M., Shafique R., Batool K., Habila M.A., Sillanpää M. Fabrication of LaCrO3@ SiO2 nanoparticles supported with graphene-oxide for capacitive energy storage and photocatalytic degradation applications. J Inorg Organomet Polym, 2024; 34: 361–373. https://doi.org/10.1007/ s10904-023-02814-6
- 10. Zheng C., Xie N., Liu X., Wang L., Zhu W., Pei Y., Yue R., Liu H., Yin S., Yao J., Zhang J., Yin Y., Guiver M.D. Durability improvement of proton exchange membrane fuel cells by doping silica‒fer- rocyanide antioxidant. Journal of Membrane Scien- ce, 2024; 690, 122195. https://doi.org/10.1016/j. memsci.2023.122195
- 11. Wu D., Ren H., Huang X., Ge W., Xie T., Tian Z., Meng F., Lin H., Li H. Strengthening functional properties and competitive crystallization behawior of La2O3-BaO-CaO-Al2O3-B2O3-SiO2 glass-ceramic for solid oxide fuel cells: Agglomeration effect of rare-earth oxide. Journal of Non-Crystalline Solids, 2024; 632: 122933. https://doi.org/10.1016/j. jnoncrysol.2024.122933
- 12. Saeed M., Marwani H.M., Shahzad U., Asiri A.M., Rahman M.M. Nanoscale silicon porous materials for efficient hydrogen storage application. Journal of Energy Storage, 2024; 81: 110418. https://doi. org/10.1016/j.est.2024.110418
- 13. Hussein A.K., Rashid F.L., Rasul M.K., Basem A., Younis O., Homod R.Z., El Hadi Attia M., Al-Obaidi M.A., Ben Hamida M.B., Ali B., Abdulameer S.F. A review of the application of hybrid nanofluids in solar still energy systems and guidelines for future prospects. Solar Energy, 2024; 272: 112485. https:// doi.org/10.1016/j.solener.2024.112485
- 14. Soudagar M.E.M., Shelare S., Marghade D., Belkhode P., Nur-E-Alam M., Kiong T.S., Ramesh S., Rajabi A., Venu H., Yunus Khan T., Mujtaba M., Shahapurkar K., Kalam M., Fattah I. Optimizing IC engine efficiency: A comprehensive review on biodiesel, nanofluid, and the role of artificial intelligence and machine learning. Energy Conversion and Management, 2024; 307: 118337. https://doi. org/10.1016/j.enconman.2024.118337
- 15. Kendall K., Ye S., Liu Z. The hydrogen fuel cel battery: Replacing the combustion engine in heavy vehicles. Engineering, 2023; 21: 39–41. https://doi. org/10.1016/j.eng.2022.11.007
- 16. Fan L., Tu Z., Chan S.H. Recent development of hydrogen and fuel cell technologies: A review. Energy Reports, 2021; 7: 8421–8446. https://doi. org/10.1016/j.egyr.2021.08.003
- 17. Günes B.G., Tekin H. Medetalibeyoglu N., Atar, M. Lütfi Yola. Efficient directmethanol fuel cel based on graphene quantum dots/multi-walled carbon nanotubes composite, Electroanalysis 2020; 321977–1982.
- 18. Abdullah N., Saidur R., Zainoodin A.M., Aslfattahi N. Optimization of electrocatalyst performance of platinum–ruthenium induced with MXene by response surface methodology for clean energy application, J. Clean. Prod. 277 (2020/12/20/2020) 123395.
- 19. Pourfayaz F., Imani M., Mehrpooya M., Shirmohammadi R. Process development and exergy analysis of a novel hybrid fuel cell-absorption refrigeration system utilizing nanofluid as the absorbent liquid, Int. J. Refrig. 2019; 97: 31–41
- 20. Kordi M.A.J. Afshari M.E. Effects of cooling passages and nanofluid coolant on thermal performance of polymer electrolyte membrane fuel cells, Journal of Electrochemical Energy Conversion and Storage 2019; 16(3): 031001.
- 21. Zakaria I., Mohamed W., Azid N., Suhaimi M., Azmi W. Heat transfer and electrical discharge of hybrid nanofluid coolants in a fuel cell cooling channel application. Applied Thermal Engineering, 2022; 210: 118369. https://doi.org/10.1016/j. applthermaleng.2022.118369
- 22. İzgi M.S., Baytar O., Şahin Ö., Kazıcı H.Ç. CeO2 supported multimetallic nano materials as an efficient catalyst for hydrogen generation from the hydrolysis of NaBH4. International Journal of Hydrogen Energy, 2020; 45(60): 34857–34866. https:// doi.org/10.1016/j.ijhydene.2020.04.034
- 23. Yao Q.L, Lu Z.H., Jia Y.S., Chen X.S., Liu X. In situ facile synthesis of Rh nanoparticles supported on carbon nanotubes as highly active catalysts for H-2 generation from NH3BH3 hydrolysis. Int J Hydrogen Energy 2015; 40: 2207e15.
- 24. Alekseeva O.K., Pushkareva I.V., Pushkarev A.S., Fateev V.N. Graphene and graphene-like materials for hydrogen energy. Nanotechnol Russia, 2020; 15: 273–300. https://doi.org/10.1134/ S1995078020030027
- 25. Sharma P., Kherb J., Prakash J., Kaushal R. A novel and facile green synthesis of SiO2 nanoparticles for removal of toxic water pollutants. Appl Nanosci. 2023; 13(1): 735–747. https://doi.org/10.1007/ s13204-021-01898-1
- 26. Duraisamy N.K., Periakaruppan R., Abed S.A., Al- -Dayan N., Dhanasekaran S., Aldhayan S.H.A. Pro- duction and characterization of Azadirachta indi- ca-mediated SiO2 nanoparticles and an evaluation of their antioxidant and antimicrobial activities. Silicon. 2023; 15(15): 6663–6671. https://doi. org/10.1007/s12633-023-02544-x
- 27. Ece M.Ş., Ekinci A., Kutluay S., Şahin Ö., Horoz S. Facile synthesis and comprehensive characterization of Ni-decorated amine groups-immobilized Fe3O4@SiO2 magnetic nanoparticles having enhanced solar cell efficiency. J Mater Sci Mater Electron. 2021; 32(13): 18192–18204. https://doi. org/10.1007/s10854-021-06361-z
- 28. Choi M., Choi W.K., Jung C.H., Kim S.B. The surface modification and characterization of SiO2 nanoparticles for higher foam stability. Sci Rep. 2020; 10(1): 19399. https://doi.org/10.1038/ s41598-020-76464-w
- 29. Saputro R.A and Rangkuti Ch. Pengaruh molaritas larutan cairan elektrolit dan arus listrik terhadap Gas HHO yang Dihasilkan Pada Generator HHO Tipe Dry Cell. 4h National Scholar Seminar, Trisakti University, 2018
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-554d56cf-641e-434a-aefb-66cfbebd271f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.