Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The wing is the main aircraft construction element, whose main task is to produce the lift, balancing the aircraft weight as well as ensuring the execution of all flight states for which the aircraft was designed. The selection of appropriate airfoils or the development of new ones is one of the most important constructions goals. As a rule, constructors aim at ensuring a sufficiently large lift with little aerodynamic drag in order to increase the scope of utility angles of attack and such shaping of these characteristics so that the aircraft performance, close to the critical angles of attack, guarantees an adequate level of safety. One of the methods of improving the aerodynamic properties of airfoils is the Kline-Fogleman modification. It involves an application of a step into the airfoil contour at a place. It enforces the creation of a swirling air stream, preventing the separation and maintaining airflow over the profile and thus the reduction of drags, as well as delaying separation. The use of this type of a solution is justified when designing unmanned aerial vehicles, of small sizes, which move with slow speeds and sometimes-large angles of attack, including those close to critical angels of attack. The Kline-Fogleman modification decreases the likelihood of aircraft stalling. The aim of this work is to present an analysis of airflow over NACA0012 airfoil with Kline-Fogleman modification. The calculations were made by solving the problem of numerical fluid mechanics. For calculations, the Comsol Maribor programme was used. The investigation focused on several different airfoil modifications (KFm-1, KFm-2, KFm-3). This enabled a selection of a solution, providing the most desirable aerodynamic characteristics.
Wydawca
Czasopismo
Rocznik
Tom
Strony
349--356
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
autor
- Polish Air Force Academy Aeronautics Faculty Dywizjonu 303 Street 25, 08-521 Deblin, Poland tel.: + 48 261 517 427, fax: +48 261 517 421
autor
- Polish Air Force Academy Aeronautics Faculty Dywizjonu 303 Street 25, 08-521 Deblin, Poland tel.: + 48 261 517 427, fax: +48 261 517 421
autor
- Polish Air Force Academy Aeronautics Faculty Dywizjonu 303 Street 25, 08-521 Deblin, Poland tel.: + 48 261 517 427, fax: +48 261 517 421
autor
- Institute of Aviation Aerodynamics Department Krakowska Av. 110/114, 02-256 Warsaw, Poland tel.: +48 22 8460011 ext. 312, fax: +48228464432
autor
- Air Force Institute of Technology Ksiecia Boleslawa Street 6, 01-494 Warsaw, Poland tel.: +48 261851300, fax: +48261851410
Bibliografia
- [1] Anderson, J. D. JR, Fundamentals of aerodynamics, fifth editions in SI Units, Mc Graw-Hill, pp. 75-89, 2011.
- [2] COMSOL CFD module user guide, http://www.comsol.com, 2015.
- [3] Cox, M. J., Avakian, V., Huynh, B. P., Performance of a Stepped Airfoil at Low Reynolds Numbers, In Proceedings of the 19th Australasian Fluid Mechanics Conference, RMIT University, Melbourne, Australia 2014.
- [4] Fertis, D. G., New airfoil-design concept with improved aerodynamic characteristics, Journal of Aerospace Engineering, Vol. 7(3), pp. 328-339, 1994.
- [5] Fertis, D. G., Smith, L. L., U.S. Patent No. 4606519, Washington 1986.
- [6] Finaish, F., Witherspoon, S., Aerodynamic performance of an airfoil with step-induced vortex for lift augmentation, Journal of Aerospace Engineering, Vol. 11(1), pp. 9-16, 1998.
- [7] https://en.wikipedia.org/wiki/Kline–Fogleman_airfoil.
- [8] Hyuk, J., Kwang-Joon, Y., Designing a Biomimetricornithopter capable of sustained and controlled fliht, Journal of Bionic Engineering, Vol. 5, No. 1, pp. 39-47, 2008.
- [9] Kline, R. L., Fogleman, F. F., U.S. Patent No. 4046338, Washington 1972.
- [10] Kline, R. L., Fogleman, F. F., U.S. Patent No. 3706430, Washington 1972.
- [11] Mishriky, F., Walsh, P., Effect of Step Depth and Angle in Kline-Fogleman (Kfm-2) Airfoil, Global Journal of Researches in Engineering – J General Engineering, vol. 16(4), 2016.
- [12] Mishriky, F., Walsh, P., Effect of the Backward-Facing Step Location on the Aerodynamics of a Morphing Wing, Aerospace, Vol. 3(25), 2016.
- [13] Nahyeon, R., Kwanjung, Y., Numerical Study on Aerodynamic Characteristics of Kline-Fogleman Airfoil and Its 3D Application at Low Reynolds Number, Trans. Korean Soc. Mech. Eng. C, Vol. 2(1), pp. 29-37, 2014.
- [14] Nahyeon, R., Chankyu, S., Kwanjung, Y., Numerical Investigation on Aerodynamic Characteristics of Kline-FoglemanAirfoil at Low Reynolds Numbers, Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 42(2), pp. 99-107, 2014.
- [15] Sibilski, K., Pietrucha, J., Zlocka, M., Comparative Evaluation of Power Requirements for Fixed, Rotary, and Flapping Wings Micro Air Vehicles, AIAA Atmospheric Flight Mechanics Conference and Exhibit, South Carolina 2007.
- [16] Simons, M., Model Aircraft Aerodynamics, 4th Ed., Special Interest Model Books, UK 2000.
- [17] Sogukpinar, H., Bozkurt, I., Calculation of Optimum Angle of Attack to Determine Maximum Lift to Drag Ratio of NACA 632-215 Airfoil, Journal of Multidisciplinary Engineering Science and Technology (JMEST), Vol. 2(5), pp. 1103-1108, 2015.
- [18] Voona, R., Enhancing the aerodynamic performance of stepped airfoils, Masters Theses 6897, 2012.
- [19] Zanottin, A., Nilifard, R., Gibertini, G., Guardone, A., Quaranta, G., Assessment of 2D/3D numerical modeling for deep dynamic stall experiments, Journal of Fluids and Structures 51, pp. 97-115, 2014.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-55466bdf-589e-4886-897d-7f8d8eee803a