Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study demonstrates how a time domain data based non-linear approach known as Stochastic Resonance (SR) can be effectively used for fault detection in spur gearboxes. SR has just been used recently for fault diagnosis in mechanical systems with a focus on faulty systems. This paper examines the behaviour of SR when it is applied to healthy systems, in particular a healthy gearbox and explores approaches like residual signal and filtered signal computations to aid in the containment of false alarms while improving overall results. Although SR is a time domain procedure, its results also extend to the frequency domain.
Czasopismo
Rocznik
Tom
Strony
3--13
Opis fizyczny
Bibliogr. 17 poz., rys., wykr.
Twórcy
autor
- DIRG - Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
autor
- DIRG - Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
autor
- DIRG - Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
autor
- DIRG - Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
Bibliografia
- 1. Benzi R, Sutera A, Vulpiani A. The mechanism of stochastic resonance. Journal of Physics A: mathematical and general. 1981;14(11):L453.
- 2. Chen XH, Cheng G, Shan XL, Hu X, Guo Q, Liu HG. Research of weak fault feature information extraction of planetary gear based on ensemble empirical mode decomposition and adaptive stochastic resonance. Measurement. 2015;73:55-67.
- 3. Dickinson S, Warburton G. Vibration of box-type structures. Journal of Mechanical Engineering Science. 1967;9(4):325-38.
- 4. Gammaitoni L, Hänggi P, Jung P, Marchesoni F. Stochastic resonance. Reviews of modern physics. 1998;70(1):223.
- 5. Howard I, Jia S, Wang J. The dynamic modelling of a spur gear in mesh including friction and a crack. Mechanical systems and signal processing. 2001;15(5):831-53.
- 6. http://www.phmsociety.org/references/datasets. 2009 PHM Challenge Competition Data Set. 2009.
- 7. Lebold M, McClintic K, Campbell R, Byington C, Maynard K. Review of vibration analysis methods for gearbox diagnostics and prognostics. Proceedings of the 54th Meeting of the Society for Machinery Failure Prevention Technology; 2000.
- 8. Lei Y, Han D, Lin J, He Z. Planetary gearbox fault diagnosis using an adaptive stochastic resonance method. Mechanical Systems and Signal Processing. 2013;38(1):113-24.
- 9. Li J, Chen X, He Z. Adaptive stochastic resonance method for impact signal detection based on sliding window. Mechanical Systems and Signal Processing. 2013;36(2):240-55.
- 10. Leng YG, Leng YS, Wang TY, Guo Y. Numerical analysis and engineering application of large parameter stochastic resonance. Journal of Sound and Vibration. 2006;292(3):788-801.
- 11. Marchesiello S, Fasana A, Garibaldi L. Best parameter choice of Stochastic Resonance to enhance fault signature in bearings. International Conference on Structural Engineering Dynamics; Lagos, Portugal 2015. p. 1-7.
- 12. Mba CU, Marchesiello S, Fasana A, Garibaldi L. Vibration Based Condition Monitoring of Spur Gears in Mesh using Stochastic Resonance. Surveillance 8 International Conference; Roanne, France 2015. p. 1- 15.
- 13. McDonnell MD, Abbott D. What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology. PLoS Comput Biol. 2009;5(5):e1000348.
- 14. Samuel PD, Pines DJ. A review of vibration-based techniques for helicopter transmission diagnostics. Journal of sound and vibration. 2005;282(1):475-508.
- 15. Večeř P, Kreidl M, Šmíd R. Condition indicators for gearbox condition monitoring systems. Acta Polytechnica. 2005;45(6).
- 16. Worden K, Antoniadou I, Marchesiello S, Mba C, Garibaldi L. An illustration of new methods in machine condition monitoring, part 1: stochastic resonance. Journal of Physics: Conference Series 2017, p. 1-10.
- 17. Yan R, Zhao R, Gao RX. Noise-assisted data processing in measurement science: Part one part 40 in a series of tutorials on instrumentation and measurement. Instrumentation & Measurement Magazine, IEEE. 2012;15(5):41-4.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-553df081-d49a-418e-8d77-deec96c4351a