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1. INTRODUCTION

The nonlinear problems driven by variable exponent operators appear in numerous
physical models such as, for example, the model of image restoration [3] or the model
of motion of electrorheological fluids [16]. This is a very active field recently (see for
example [1,4,8,10,13,15,17]). In the monograph [14], Rădulescu and Repovs̆ provided
a thorough introduction to the theory of nonlinear partial differential equations
with a variable exponent.

In this paper, we discuss the existence of a sequence of solutions for two types of
problems: a local one driven by p(·)-Laplace type operator with a variable exponent,
and a nonlocal one, driven by fractional p(·, ·)-Laplace type operator with a variable
exponent. These problems were considered in [9] and [12] respectively, but the authors
incorrectly applied the Dual Fountain Theorem in their proofs. The aim of this note is
to give correct arguments.

In paper [9], the authors discussed the existence and multiplicity of weak solutions
for a general class of local quasilinear problems involving p(·)-Laplace type operators,
with Dirichlet boundary conditions involving variable exponents

{
−div(a

(
|∇u|p(x)

)
|∇u|p(x)−2 ∇u) = λf(x, u) in Ω,

u = 0 on ∂Ω,
(P1)
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where λ > 0 is a real parameter, Ω ⊂ RN , N ≥ 3, Ω is a bounded domain with smooth
boundary ∂Ω, p ∈ C(Ω̄), and 1 < p(x) < N , for all x ∈ Ω̄. The function a : R+ → R
satisfies the following hypotheses:

(A) (i) the function a : R+ → R is continuous and the mapping Y : RN → R, given
by Y (η) := A(|η|p(x)) is strictly convex for all x ∈ Ω, where A is the primitive
of a, that is A(t) =

∫ t

0 a(s)ds,
(ii) there are constants α, β > 0, 0 < α ≤ β such that α ≤ a(s) ≤ β for all s ≥ 0,
(iii) there exists ϖ > 1 such that (0, ∞) ∋ t 7−→ 1

p(x) A(t)− 1
ϖ a(t)t is nondecreasing

for all x ∈ Ω.

An important case is given by a(t) ≡ 1. In this case, we have the p(x)-Laplacian
operator

∆p(·)(u) = ∇ ·
(

|∇u|p(·)−2 ∇u
)

and ϖ = p+, where p+ = maxx∈Ω̄ p(x).
In paper [12], the authors discussed the existence results of solutions to the nonlocal

elliptic problem involving the fractional p(·, ·)-Laplacian
{

−LKu + |u|p(x)−2
u = λf(x, u) in Ω,

u = 0 in RN \ Ω,
(P2)

where λ > 0 is a real parameter, Ω is a bounded domain in RN with Lipschitz boundary
∂Ω, LK is a nonlocal operator defined pointwise as

LKu(x) = 2
∫

RN

|u(x) − u(y)|p(x,y)−2 (u(x) − u(y)) K(x, y)dy for all x ∈ RN ,

where K : RN × RN → (0, ∞) is a kernel function with the following properties:

(K) (i) mK ∈ L1 (
RN × RN

)
, where m(x, y) = min{1, |x − y|p(x,y)};

(ii) there exist θ0 > 0 and 0 < s < 1 such that K(x, y) |x − y|N+sp(x,y) ≥ θ0
for almost all (x, y) ∈ RN × RN and x ̸= y;

(iii) K(x, y) = K(y, x) for all (x, y) ∈ RN × RN ,

where p ∈ C
(
RN × RN

)
satisfies p(x, y) = p(y, x) for all x, y ∈ RN ,

1 < inf
(x,y)∈RN ×RN

p(x, y) ≤ sup
(x,y)∈RN ×RN

p(x, y) <
N

s

and p(x) is the abbreviation for p(x, x) for all x ∈ RN . An important case is given
by K(x, y) = |x − y|−(N+sp(x,y)). In this case, we have the fractional p(·, ·)-Laplacian
operator

(−∆)s
p(·,·)u(x) = P.V.

∫

RN

|u(x) − u(y)|p(x,y)−2 (u(x) − u(y))
|x − y|N+sp(x,y) dy for all x ∈ RN .



Notes on applications of the dual fountain theorem. . . 753

For both problems we introduce the hypotheses on the nonlinearity f :

(f1) f is a Carathéodory function and there exists c > 0 such that

|f(x, t)| ≤ c
(

1 + |t|ν(x)−1
)

for all (x, t) ∈ Ω × R, where ν ∈ C(Ω̄), 1 < p+ < ν− ≤ ν(x) ≤ ν+ < p∗(x) for
x ∈ Ω̄, and p∗(x) denotes the critical variable exponent related to p(x), which is
defined for all x ∈ Ω̄ by the pointwise relation p∗(x) = Np(x)

N−sp(x) , where s = 1 for
problem (P1), p− = minx∈Ω̄ p(x), p+ = maxx∈Ω̄ p(x).

(f2) limt→+∞
F (x,t)
|t|p+ = +∞ uniformly for almost all x ∈ Ω, where the function F is the

primitive of f with respect to the second variable, that is, F (x, t) :=
∫ t

0 f(x, s)ds,
x ∈ Ω.

(f3) There exists η > 0 such that

F(x, t) ≤ F(x, s) + η

for any x ∈ Ω and all 0 ≤ t ≤ s or s ≤ t ≤ 0, where F(x, t) = f(x, t)t − ωF (x, t)
and ω = p+ for problem (P1), and ω = ϖ for problem (P2), where ϖ occurs in
(A)(iii).

(f4) f(x, −t) = −f(x, t) for all x ∈ Ω and all t ∈ R.
(f5) lim inf

|t|→0
F (x,t)
|t|p− = +∞ uniformly for almost all x ∈ Ω.

We can now formulate our main results.

Theorem 1.1. Assume that (A), (f1)–(f5) hold. Then, for each λ > 0, the problem
(P1) possesses infinitely many small negative energy solutions.

Theorem 1.2. Assume that (K), (f1)–(f5) hold. Then, for each λ > 0, the problem
(P2) possesses infinitely many small negative energy solutions.

As is shown in [18, p. 18], the papers [9] and [12], which discuss prob-
lems (P1) and (P2), respectively, contain incorrect reasonings, which use the
Dual Fountain Theorem (see Theorem 2.4 below). The authors assume only
(f1)–(f4) of the nonlinearity f and try to find some unbounded sequences {δk}, {γk} for
which (B1)–(B4) are satisfied. But showing (B1), (B2) is inconsistent and showing (B3)
is non conclusive. In our approach to this problems we find null sequences {δk}, {γk} for
which (B1)–(B4) are satisfied. To do this, we additionally impose a further constraint
on the nonlinearity f , i.e. (f5), that controls its behaviour for small t. Let us note that
we also widen the range of λ to any positive number. Since we used the same list of
assumptions for nonlinearity f in both (P1) and (P2) problems, we are able to prove
both theorems simultaneously.
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2. MATHEMATICAL BACKGROUND

In this section we define solution spaces for problems (P1) and (P2). Let
Ω ⊂ RN , N ≥ 3, be a bounded domain with smooth boundary ∂Ω and p ∈ C(Ω̄)
with 1 ≤ p(x) < N . The variable exponent Lebesgue space, denoted by Lp(·)(Ω),
is the set of all measurable functions u : Ω → R such that the modular
ϱp(·)(u) :=

∫
Ω |u(x)|p(x)

dx is finite, that is,

Lp(·)(Ω) :=



u : Ω → R : u is measurable and

∫

Ω

|u(x)|p(x)
dx < ∞



 .

If we endow this space with the so-called Luxemburg norm

∥u∥p(·) = inf



µ > 0 :

∫

Ω

∣∣∣∣
u(x)

µ

∣∣∣∣
p(x)

dx ≤ 1





it becomes a separable Banach space (see [5, Theorems 3.2.7 and 3.4.4]).
If 1 < p(x) for x ∈ Ω, then Lp(·)(Ω) is reflexive (see [5, Theorem 3.4.7]). Note that, if
p is a constant function, the Luxemburg norm ∥·∥p(·) and the space Lp(·)(Ω) coincide
with the standard norm ∥·∥p and the standard Lebesgue space Lp(Ω), respectively.
We will need the following relation between the modular ϱp(·) and the norm ∥·∥p(·)
(see [9, Proposition 2.2]).
Lemma 2.1. Let u ∈ Lp(·)(Ω), then, we have

(a) if ∥u∥p(·) < 1, then ∥u∥p+

p(·) ≤ ϱp(·)(u) ≤ ∥u∥p−

p(·),
(b) if ∥u∥p(·) > 1, then ∥u∥p−

p(·) ≤ ϱp(·)(u) ≤ ∥u∥p+

p(·).

Next, the variable exponent Sobolev space W 1,p(·)(Ω) is defined by

W 1,p(·)(Ω) :=
{

u ∈ Lp(·)(Ω) : |∇u| ∈ Lp(·)(Ω)
}

and it is equipped with the norm

∥u∥1,p(·) = ∥|∇u|∥p(·) + ∥u∥p(·)

for all u ∈ W 1,p(·)(Ω). The space W
1,p(·)
0 (Ω) is defined by the closure of C∞

0 (Ω) in
W 1,p(·)(Ω). Since ∥u∥p(·) ≤ C ∥|∇u|∥p(·) for all u ∈ W

1,p(·)
0 (Ω) and some constant

C > 0, ∥u∥1,p(·) and ∥|∇u|∥p(·) are equivalent norms on W
1,p(·)
0 (Ω). For a solution

space for problem (P1) we use

E1 := W
1,p(·)
0 (Ω)

equipped with the norm ∥u∥E1
:= ∥|∇u|∥p(·) for all u ∈ E1. E1 is a reflexive and

separable Banach space (see [9, Proposition 2.4]).
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Under the assumption (A), the functional A1 : E1 → R defined by

A1(u) :=
∫

Ω

1
p(x)A(|∇u|p(x))dx for all u ∈ E1

is of class C1(E1,R) with the derivative given by

⟨A′
1(u), v⟩ =

∫

Ω

a(|∇u|p(x)) |∇u|p(x)−2 ∇u · ∇v for all u, v ∈ E1

(see [9, Lemma 2.5]). Moreover, under the assumption (f1), the functional B1 : E1 → R
defined by

B1(u) :=
∫

Ω

F (x, u)dx for all u ∈ E1

is of class C1(E1,R) with the derivative given by ⟨B′
1(u), v⟩ =

∫
Ω f(x, u)v for all

u, v ∈ E1. Hence, if we define E1 : E1 → R by

E1,λ := A1 − λB1,

then E1,λ ∈ C1(E1,R) and its critical points are the so-called weak solutions to the
problem (P1), i.e. u ∈ E1 such that

∫

Ω

a(|∇u|p(x)) |∇u|p(x)−2 ∇u · ∇v − λ

∫

Ω

f(x, u)v = 0 for all v ∈ E1.

Now, we define a solution space for problem (P2). Let us denote with W
s,p(·,·)
K (Ω)

the completion of C∞
0 (RN ) with respect to the norm

∥u∥ =
∥∥u|Ω

∥∥
p(·) + [u]p(·,·)

where

[u]p(·,·) = inf





µ > 0 :
∫ ∫

RN ×RN

∣∣∣∣
u(x) − u(y)

µ

∣∣∣∣
p(x,y)

K(x, y)dxdy ≤ 1





.

For a solution space for problem (P2) we use

E2 :=
{

u ∈ W
s,p(·,·)
K (Ω) : u = 0 in RN \ Ω

}

with the norm ∥·∥E2
= ∥·∥. E2 is a reflexive and separable Banach space

(see [2, Lemma 8 and Remark 6]).
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Let us define the functionals A2, B2 : E2 → R by

A2(u) :=
∫ ∫

RN ×RN

1
p(x, y) |u(x) − u(y)|p(x,y)

K(x, y)dxdy +
∫

Ω

1
p(x) |u|p(x)

dx

and

B2(u) :=
∫

Ω

F (x, u)dx

for all u ∈ E2.
Standard arguments imply that A2, B2 ∈ C1(E2,R) and their Fréchet derivatives

are given by

⟨A′
2(u), v⟩

=
∫ ∫

RN ×RN

|u(x) − u(y)|p(x,y)−2 (u(x) − u(y)) (v(x) − v(y)) K(x, y)dxdy

+
∫

Ω

|u|p(x)−2
uvdx

and ⟨B′
2(u), v⟩ =

∫
Ω f(x, u)v for all u, v ∈ E2. If we define E2 : E2 → R by

E2,λ := A2 − λB2,

then E2,λ ∈ C1(E2,R) and its critical points are the so-called weak solutions to the
problem (P2), i.e. u ∈ E2 such that

∫ ∫

RN ×RN

|u(x) − u(y)|p(x,y)−2 (u(x) − u(y)) (v(x) − v(y)) K(x, y)dxdy

+
∫

Ω

|u|p(x)−2
uvdx − λ

∫

Ω

f(x, u)v = 0

for all v ∈ E2.
Now we formulate some facts we will need.

Lemma 2.2. Let τ ∈ C(Ω̄) with 1 ≤ τ(x) < p∗(x). Then the embedding Ei ↪→ Lτ(·)(Ω),
i = 1, 2, is continuous and compact.

Proof. By [9, Proposition 2.4] for i = 1, and [2, Theorem 2] for i = 2, the embedding
Ei ↪→ Lmax{τ(·),p−}(Ω) is continuous and compact. By [11, Theorem 2.2], the embed-
ding Lmax{τ(·),p−}(Ω) ↪→ Lτ(·)(Ω) is continuous. Thus Lemma follows by superposition
Ei ↪→ Lmax{τ(·),p−}(Ω) ↪→ Lτ(·)(Ω).
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Lemma 2.3. For i = 1, 2, we have:

(a) if ∥u∥Ei
< 1, then αi

p+ ∥u∥p+

Ei
≤ Ai(u) ≤ βi

p− ∥u∥p−

Ei
,

(b) if ∥u∥Ei
> 1, then αi

p− ∥u∥p−

Ei
≤ Ai(u) ≤ βi

p+ ∥u∥p+

Ei
,

where α1 = α, α2 = 1, β1 = β and β2 = 1 and α, β are constants from (A)(ii).

Proof. It follows from (A)(ii) and [9, Proposition 2.2] for the functional A1 and from
[12, Lemma 2.3] for the functional A2.

Finally, we recall the Dual Fountain Theorem. Let X be a reflexive and separable
Banach space. By [7, Theorem 1.22], there exist sequences {en} ⊂ X and {e∗

n} ⊂ X∗

such that
X = span{en, n ∈ N}, X∗ = spanw∗{e∗

n, n ∈ N}
and ⟨e∗

i , ej⟩ = δij , where δij is the Kronecker delta. Write

Xn = span{en}, Yk =
k⊕

n=1
Xn, Zk =

∞⊕

n=k

Xn. (2.1)

We say J ∈ C1(X,R) satisfies (C)∗
c -condition at level c ∈ R if any sequence

{u(n)}n∈N ⊂ X satisfying

u(n) ∈ Yn, J(u(n)) → c,
(

1 +
∥∥∥u(n)

∥∥∥
) ∥∥∥(J |Yn)′ (u(n))

∥∥∥
Y ∗

n

→ 0,

where Ym are subspaces defined in (2.1), contains a subsequence converging to a critical
point of J .

We are ready to recall the Dual Fountain Theorem [19, Theorem 3.18]
(see also [9, Theorem 3.11]).

Theorem 2.4. Let X be a reflexive and separable Banach space, J ∈ C1(X,R) an even
functional, and Yk, Zk the subspaces defined in (2.1). Assume that there is k0 > 0 such
that for each k ≥ k0, there exist δk > γk > 0 such that

(B1) ak = inf{J(u) : u ∈ Zk, ||u|| = δk} ≥ 0,
(B2) bk = max{J(u) : u ∈ Yk, ||u|| = γk} < 0,
(B3) dk = inf{J(u) : u ∈ Zk, ||u|| ≤ δk} → 0 as k → +∞,
(B4) J satisfies (C)∗

c-condition for every c ∈ [dk0 , 0).

Then J has a sequence of negative critical values converging to 0.

3. PROOFS OF THE MAIN RESULTS

Since Ei, i = 1, 2, are reflexive and separable Banach spaces, we can obtain
Yk,i, Zk,i ⊂ Ei, k ∈ N, which satisfy (2.1). We will need the following lemma (see
[9, Lemma 3.7], [6, Lemma 4.9]).
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Lemma 3.1. For τ ∈ C(Ω̄) with 1 ≤ τ(x) < p∗(x) for all x ∈ RN , i = 1, 2 and k ∈ N
define

βk,τ,i = sup{∥u∥τ(·) : ∥u∥Ei
= 1, u ∈ Zk,i}. (3.1)

Then limk→∞ βk,τ,i = 0.

Proof. Fix i ∈ {1, 2} and τ ∈ C(Ω̄) with 1 ≤ τ(x) < p∗(x) for all x ∈ RN .
Obviously, 0 < βk+1,τ,i ≤ βk,τ,i, so {βk,τ,i}k∈N converges to some β ≥ 0. For
every k ∈ N choose uk ∈ Zk,i such that ∥uk∥Ei

= 1 and ∥uk∥τ(·) >
βk,τ,i

2 .
As Ei is reflexive, {uk}, up to a subsequence, weakly converges to some u ∈ Ei.
Since ⟨e∗

n, uk⟩ = 0 if k > n, we have 0 = limk→∞ ⟨e∗
n, uk⟩ = ⟨e∗

n, u⟩ for all n ∈ N. Thus
u = 0. By Lemma 2.2, Ei compactly embeds into Lτ(·)(Ω), which implies ∥uk∥τ(·) → 0
and so βk,τ,i → 0, which proves the lemma.

Using the notations introduced in the previous section, we can provide proof of
Theorems 1.1 and 1.2 simultaneously.

Proof of Theorems 1.1 and 1.2. Fix λ > 0. Since the functional Ei,λ is even and
belongs to C1(Ei,R), by Theorem 2.4 it suffices to show that if k is large enough, then
there exist δk > γk > 0 such that (B1)–(B4) hold.
Verification of (B1). By (f1), there exists C > 0 such that

F (x, t) ≤ C
(

|t| + |t|ν(x)
)

for all x ∈ Ωand t ∈ R. (3.2)

Then, by Lemma 2.3 and (3.1), for any u ∈ Zk,i with ∥u∥E1
< 1, we have

Ei,λ(u) = Ai(u) − λBi(u) ≥ αi

p+ ∥u∥p+

Ei
− Cλ

∫

Ω

|u| dx − Cλ

∫

Ω

|u|ν(x)
dx

≥ αi

p+ ∥u∥p+

Ei
− Cλ

(
∥u∥1 + max{∥u∥ν+

ν(·) , ∥u∥ν−

ν(·)}
)

≥ αi

p+ ∥u∥p+

Ei
− Cλ

(
βk,1,i ∥u∥Ei

+ max{βν+

k,ν,i ∥u∥ν+

Ei
, βν−

k,ν,i ∥u∥ν−

Ei
}
)

≥ αi

p+ ∥u∥p+

Ei
− Cλ

(
βk,1,i + max{βν+

k,ν,i, βν−
k,ν,i}

)
∥u∥Ei

Since {βk,1,i}, {βk,ν,i} are null sequences and p+ > 1 we have

δk :=
(

2p+

αi
Cλ

(
βk,1,i + max{βν+

k,ν,i, βν−
k,ν,i}

)) 1
p+−1

→ 0 as k → ∞.

Hence, there exists k0 ∈ N such that δk < 1 for all k ≥ k0. Thus, for all u ∈ Zk,i with
∥u∥Ei

= δk, k ≥ k0, we have

Ei,λ(u) ≥ αi

2p+ δp+

k > 0.



Notes on applications of the dual fountain theorem. . . 759

This shows (B1).
Verification of (B2). First, we show that for any M > 0 we can find CM > 0 such that

F (x, t) ≥ M |t|p
−

− CM |t|ν(x) for all t ∈ R and x ∈ Ω. (3.3)

By (f5), there is 0 < ε < 1 such that

F (x, t) ≥ M |t|p
−

for all |t| < ε and all x ∈ Ω. (3.4)

By (f1), there is C > 0 such that (3.2) hold. Hence, if |t| ≥ ε, then

|t| ≤ ε1−ν(x) |t|ν(x) ≤ ε1−ν+ |t|ν(x) and |t|p
−

≤ εp−−ν+ |t|ν(x)
.

Thus

F (x, t) ≥ −C
(

|t| + |t|ν(x)
)

≥ −C
(

ε1−ν+
+ 1

)
|t|ν(x) = −C1 |t|ν(x)

= −C1 |t|ν(x) − M |t|p
−

+ M |t|p
−

≥ −C1 |t|ν(x) − Mεp−−ν+ |t|ν(x) + M |t|p
−

= −CM |t|ν(x) + M |t|p
−

,

where C1 = C
(

ε1−ν+ + 1
)

and CM = Mεp−−ν+ + C1. This and (3.4) give us (3.3).
Since Yk,i is finite dimensional, all the norms are equivalent, so we can find

0 < θk < 1 such that for u ∈ Yk,i with ∥u∥Ei
≤ θk we have ∥u∥ν(·) < 1, and so, by

Lemma 2.1 and Lemma 2.3

Ei,λ(u) ≤ βi

p− ∥u∥p−

Ei
− λ

∫

Ω

F (x, u)dx

≤ βi

p− ∥u∥p−

Ei
− λM

∫

Ω

|u(x)|p
−

dx + λCM

∫

Ω

|u(x)|ν(x)
dx

≤ βi

p− ∥u∥p−

Ei
− λM ∥u∥p−

p− + λCM ∥u∥ν−

ν(·)

≤ βi

p− ∥u∥p−

Ei
− λMc̃ ∥u∥p−

Ei
+ λCM C̃ ∥u∥ν−

Ei

=
(

βi

p− − λMc̃

)
∥u∥p−

Ei
+ λCM C̃ ∥u∥ν−

Ei

where constants c̃, C̃ arise from the equivalence of norms. Now, choosing
M > βi

λc̃p− , we can find 0 < γk < min{θk, δk} such that J(u) < 0 for all u ∈ Yk,i with
∥u∥Ei

= γk. This shows (B2).
Verification of (B3). First, we note that dk < 0 for all k ≥ k0, since
Yk,i ∩ Zk,i ̸= {∅}, 0 < γk < δk and J(u) < 0 for all u ∈ Yk,i with ∥u∥Ei

= γk.
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Using (3.1) and (3.2), we have for any 0 ≤ t ≤ δk < 1 and w ∈ Zk

with ∥w∥Ei
= 1

Ei,λ(tw) ≥ −λBi(tw) ≥ −λC

∫

Ω

|tw| dx − λC

∫

Ω

|tw|ν(x)
dx

≥ −δkλC

∫

Ω

|w| dx − δν−
k λC

∫

Ω

|w|ν(x)
dx

≥ −δkλC ∥w∥1 − δν−
k λC max

{
∥w∥ν−

ν(·) , ∥w∥ν+

ν(·)

}

≥ −δkλCβk,1,i ∥w∥Ei
− δν−

k λC max
{

βv−
k,ν,i ∥w∥ν−

Ei
, βv+

k,ν,i ∥w∥ν+

Ei

}

= −δkλCβk,1,i − δν−
k λC max

{
βv−

k,ν,i, βv+

k,ν,i

}
,

which gives
−δkλCβk,1,i − δν−

k λC max
{

βv−
k,ν,i, βv+

k,ν,i

}
≤ dk < 0.

As {δk}, {βk,1,i}, {βk,ν,i} are null sequences, (B3) follows.
Verification of (B4). The proof is the same as in [9, Lemma 3.12] for i = 1 and
in [12, Lemma 2.13] for i = 2. This shows (B4), and the proof is complete.
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