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INTRODUCTION

Ultrasound (US) imaging is a common meth-
od for visualization in clinical practice. The im-
age is created by probing the tissue with a series 
of acoustic signals in the US range. Then, these 
signals are captured as they reflect, with some en-
ergy loss, from different tissues. The final image 
is composed using a numerical algorithm. This 
approach is relatively inexpensive, which makes 
the equipment widely available. While the im-
age is generally of lower quality than what can 
be obtained with other methods, such as magnetic 
resonance imaging [1, 2], it allows for diagnosis 
as well as increases the safety of the patient and 
the quality of the medical procedure.

Increasing interest can be observed in the field 
of producing soft tissue phantoms for use in med-
ical training [3–6]. The use of phantoms is also 
very common in development of medical robotic 

systems, for instance in breast biopsy [7, 8]. De-
pending on their purpose, the phantoms differ in 
structure. In terms of low-cost, easy to prepare 
phantoms, a popular option is to utilize actual 
animal soft tissues [9]. Another common solution 
is to use gelatin [10, 11], often with additional in-
gredients, such as corn flour, agar and more [12]. 
Gelatin based phantoms can also mimic inflamed 
tissue [13] This is both inexpensive and sustain-
able, in addition to offering good results in terms 
of visualization under US. To mimic the different 
layers in human tissue, different elements can be 
added [14, 15] usually based on common ingre-
dients, such as tofu for skin modeling and nitrile 
gloves for cyst-like structures. 

While US imaging is very common and af-
fordable, the quality of the obtained images can 
vary, as the method is susceptible to various ar-
tifacts [16, 17]. US devices offer a large number 
of parameters available to the user, which can be 
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tuned to increase the quality of the image. Never-
theless, setting these parameters requires experi-
ence and can be difficult. At the same time, the 
parameters can greatly affect the signal-to-noise 
ratio in the image and the ability to discern certain 
objects in it. The artifacts are difficult to remove 
and soft tissue phantoms are especially suscep-
tible to them, due to lower mechanical endurance 
of the top layer, when compared to actual human 
tissue. This makes the images difficult to inter-
pret, while the interpretation is mostly subjective. 
This problem is more exacerbated by the fact that 
the phantoms are often used for medical training 
and development of medical robotics in biopsy 
with US. Therefore, automatic segmentation of 
pathological tissue in tissue phantoms has been 
an active area of study [18, 19]. Nevertheless, 
due to the large variety of phantoms, US artifacts 
and objects representing pathologies, the problem 
still remains open. This is only compounded by 
the fact that novel and advanced techniques in 
machine learning typically require large datasets 
[20, 21], while the results highly depend on the 
chosen architecture and the training process [22]. 
While the performance of deep learning methods 
is generally higher than that of classical methods 
[23], the need for large input sets can be a limiting 
factor in some applications.

Therefore, the aim of this study was to pro-
pose a simple and fast algorithm for segmenting 
cyst-like structures in gelatin-based soft tissue 
phantoms under US imaging with limited num-
ber of training samples. For this purpose, two 
large soft tissue phantoms with convex cyst-like 
structures were prepared. These phantoms were 
then registered using US under varied param-
eters. The obtained images were manually seg-
mented and served as the ground-truth for the 
analysis. In the next step a computer-vision algo-
rithm was developed and trained on 20% of the 
images and then tested on the remaining ones. 
This procedure was repeated 60 times in order to 
minimize the effects of random number genera-
tion. The DICE coefficient was chosen to mea-
sure the quality of results. The following sections 
describe the approach in detail.

MATERIALS AND METHODS

As it was mentioned in the previous section, 
the aim of this study was to develop a simple and 
fast algorithm for segmenting cyst-like structures 

in gelatin-based soft tissue phantoms under US 
imaging. However, this involved preparation of 
the phantoms and the database for segmentation. 
All of these steps were described in detail in the 
following sections.

Preparing soft tissue phantoms

The first step of this research was to prepare 
the soft tissue phantoms. The base recipe was as-
sumed after [10] and consisted of 50 g of gelatin 
with 160 g of corn flour and 1000 ml of warm wa-
ter. In the first step, the corn flour was mixed with 
the water and heated on an induction stove for 
2 minutes. After that, the gelatin was added and 
stirred into the mix. This step was performed with 
care to prevent the mixture from clamping up. 
Then, the solution was further heated and stirred 
for another 10 minutes to thicken it up. The re-
sulting mixture was poured into a bread-form 
container with a rectangular shape and additional 
elements were implanted into it. These elements 
represented the cysts and the different layers of 
the skin. Specifically, cut nitrile gloves were filled 
with water and tied to substitute fluid-based pa-
thologies, while the skin layer was represented 
with a rectangular tofu slice, which was 1 to 2 cm 
wide. After cooling down, the model was stored 
in the fridge for approximately 12 hours, before 
being evaluated with US. In total, two models 
were prepared with this recipe – see Figure 1 for 
one of the samples. The models were relatively 
large and contained multiple elements, which al-
lowed for registration of a varied set of images.

Registering soft tissue phantoms 
under ultrasound

MEDISON SonoAce PICO US was equipped 
with a linear probe L5-9EC, frequency of 9MHz, 
and used to register the phantoms, see Figure 2 
and Figure 3. In order to introduce as many typi-
cal conditions into dataset as possible, images 
were registered under slightly different param-
eters of the US. Specifically, for each phantom, 
US was manually set so that the cyst-like objects 
were visible. Then, the objects were registered 
with varying TCG curve, gain, focus and probe 
alignment to increase the robustness of the ob-
tained results. The images were then saved into 
lossless bmp files with a resolution of 640 × 480, 
a sample was presented in Figure 4a. In total, 19 
varied images were obtained with this method.
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Obtaining the database   
for a computer vision algorithm

After the registration, each image was man-
ually segmented in GIMP. The cyst-like object 
was marked in green, as seen in Figure 4b. This 
resulted in a database of 19 input images and 
corresponding 19 output images. This set was 
then shuffled and split into two parts. The first 
part – training – was used to prepare the algo-
rithm for segmenting the cysts, while the sec-
ond part was needed for the validation of the 
procedure on unseen cases – more details were 
given in the section 2.5.

An algorithm for automatic segmentation 
of cysts in the soft tissue phantoms

The image processing algorithm consisted 
of several steps. In the first step, the parts of the 
image corresponding to the graphical user inter-
face of the US device were cropped, leaving only 
the region of interest (see Fig. 4a). Then, custom 
thresholding method was applied onto the image 
and followed with labelling, simple classifica-
tion and convex hull. The thresholding method 
featured two stages, similarly to [24]. In the first 
step, the threshold was set to the level thr1, then 
the second threshold was computed using the 
thresholded image and scaled with the second 
parameter thr2. These two parameters could be 
tuned to the problem and this was the approach 
undertaken in this study – more details were giv-
en in the section 2.5. The final equation used for 
obtaining the thresholded image was as follows:

 

 

1 

 𝐼𝐼𝑡𝑡ℎ𝑟𝑟  =  𝑏𝑏𝑏𝑏(𝐼𝐼 >  (𝑚𝑚𝑚𝑚𝑚𝑚[I ∙ (𝐼𝐼 >  𝑡𝑡ℎ𝑟𝑟1)] ∙ 𝑡𝑡ℎ𝑟𝑟2)) (1) 
 
 

   DICE = 2|A∩B|
|A|+|B| (2) 

 

 (1)

where: Ithr – the image obtained after threshold-
ing, be() – a function, which performs 
an erosion operation on a binary image 
(here: the version from Scikit-image [25] 
was used), I – the input image, mfn() – 
function, which computes the mean value 
of a matrix using only the nonzero ele-
ments thr1 – the first trainable parameter, 
denoting the initial threshold value, thr2 – 
the second trainable parameter, denoting 
the strength of the second threshold.

Figure 1. One of the obtained soft tissue phantoms

Figure 2. The US device MEDISON 
SonoAce PICO used in this study

Figure 3. The linear probe used 
for registration of images
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segmentation of the test set was performed using 
the variant with the highest average DICE from 
the training runs.

Assessing the quality of the results 
obtained from the algorithm

To assess the quality of the obtained results, 
the DICE coefficient [26] was used. The coef-
ficient measures the relative difference between 
two objects and is widely employed in segmenta-
tion problems. The exact equation for it can be 
written as follows:

 

 

1 

 𝐼𝐼𝑡𝑡ℎ𝑟𝑟  =  𝑏𝑏𝑏𝑏(𝐼𝐼 >  (𝑚𝑚𝑚𝑚𝑚𝑚[I ∙ (𝐼𝐼 >  𝑡𝑡ℎ𝑟𝑟1)] ∙ 𝑡𝑡ℎ𝑟𝑟2)) (1) 
 
 

   DICE = 2|A∩B|
|A|+|B| (2) 

 
 (2)

where: DICE – the DICE coefficient used to mea-
sure the quality of the segmentation (be-
tween 0.0 and 1.0, higher values signified 
better results), A – the segmented image, 
B – the ground truth image.

Furthermore, as the algorithm was meant for 
real-time augmentation of US images, the adopt-
ed measure was also the average time needed to 
segment a single frame from US on a consumer-
grade hardware.

RESULTS AND DISCUSSION

As it was mentioned before, the acquired im-
ages were split into train and test subsets with 
20:80 ratio with the training dataset containing 
only 4 samples. The different variants of the algo-
rithm were tested over 60 reruns of the procedure 
with a different RNG seed for dataset splitting. 
The following subsections provide detailed re-
sults of the algorithm performance, as well as the 
summary of the best results.

The performance of the algorithm

The predictive capabilities of the algorithm 
were tested on the subset of data unseen in train-
ing, which consisted of 14 images. As it was men-
tioned before, the training and testing procedures 
were repeated 60 times with different seeds for 
the RNG, which resulted in different shuffling 
of the subsets. The DICE coefficients obtained 
on the 60 test sets were presented in Figure 5. 
As it can be seen in Table 1, the performance of 
the algorithm in the studied cases was relatively 
good. The DICE coefficient never dropped below 

This approach was used to focus the thresh-
olding on the cyst, rather than the full image, 
which may contain other similar objects. In the 
third step, a labelling procedure was performed 
on the thresholded image and cyst-like objects 
were classified using a simple and fixed decision 
tree, in which questions included relative posi-
tioning and relative area of the object. Finally, 
after the cyst-like object was selected from the 
image, a convex-hull operation was performed on 
it, to remove common artifacts present in US im-
aging from the final image.

Training and testing the algorithm

In order to analyze the predictive capabilities 
of the algorithm, the dataset was split into two 
subsets, one for training and one for testing. The 
training percentage was set to 20%, while the re-
maining 80% of the images were used to test the 
procedure. Two parameters of the algorithm – thr1 
and thr2 – were set as trainable and their values 
were determined with a numerical search. These 
parameters represented the threshold values for 
the operations mentioned in the previous sections 
and were allowed to change in the following rang-
es: from 0.784 (or 200/255) to 0.933 (or 238/255) 
with a step of 0.008 (or 2/255) for thr1 and from 
0.9 to 1.0 with a step of 0.01 for thr2. This resulted 
in 220 variants of the algorithm (based on the val-
ues of thr1 and thr2), trained and tested. The test/
train procedure was repeated 60 times under dif-
ferent seed of the random number generator with 
dataset shuffling, in order to minimize the effect 
of luck on the results. The quality of each vari-
ant of the procedure was assessed using the DICE 
coefficient. For each rerun of the procedure, the 

Figure 4. (a) An image of the cyst-like 
structure in the phantom, (b) a manually 

segmented mask of the cyst-like structure
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0.85, while in the best test case it almost reached 
0.95. On average, the algorithm returned a DICE 
of nearly 0.92 on the test set over 60 reruns of 
the procedure. The performance in training was 
slightly higher than in testing, which might suggest 
some overfitting, given the low number of training 
cases. On the other hand, the good results signify 
that the procedure did not require many samples 
to be optimized, which was its advantage. Note 
that these results should be taken with caution, 
as the studied cases included mainly convex-like 
objects, albeit with a lot of artifacts, high signal-
to-noise ratio and low resolution. Nevertheless, in 
general the obtained results were promising.

Additionally, the procedure was able to 
achieve an averaged framerate of 35.7 FPS on a 
single CPU thread using modern consumer-grade 
hardware with unoptimized Python implemen-
tation, making it inexpensive to run and couple 
with US systems.

Selected results of the segmentation

Selected results obtained on the test data were 
presented in Figure 6. The algorithm was capable 
of segmenting images with high levels of artifacts 
caused by US. This was visible in most cases, 
but especially in the top-right case in Figure 6. 

This performance was achieved by the finishing 
convex hull operation coupled with the trainable 
thresholds. Interestingly, the training procedure 
did not try to optimize the threshold alone, which 
with this level of noise would not be sufficient. In-
stead, its focus was shifted to thresholding the best 
image for the subsequent convex hull operation.

The relationship between  
the trainable thresholds

As it can be seen in Figure 7, the relation-
ship between the two trainable parameters: thr1 
– threshold #1 and thr2 – threshold #2 was non-
linear, albeit only very slightly. The best results in 
terms of DICE, higher than 0.92, were obtained 
for a variety of different combinations of param-
eters in the middle band of the graph. 

In general, multiple variants of the algorithm 
resulted in good DICE coefficients. However, 
with some combinations DICE could be as low 
as 0.7, which meant that the trainable parameters 
had a significant impact on the results.

Limitations

In general, the results obtained from the pro-
cedure were very good. Nevertheless, in some 

Figure 5. The DICE coefficients obtained on the 60 test sets for both training and testing of the procedure

Table 1. The summary of the obtained results in terms of DICE
Specification Best DICE [-] Worst DICE [-] Average DICE [-]

Train 0.985 0.866 0.954 ± 0.022

Test 0.946 0.853 0.916 ± 0.022
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cases the DICE coefficient could drop below 0.9, 
which was exemplified in Table 1. However, even 
these results would still be sufficient for some of 
the further operations in computer-aided-surgery 
and surgical training, such as computing the tar-
get point for aspiration. 

While the performance of the algorithm 
was sufficient in the analyzed cases, it could 

potentially degrade with highly concave objects – 
this is a limitation of this approach and should be 
taken into consideration with the type and geom-
etry of objects inserted into the phantom. 

Although the segmented image already en-
hances the visual representation of the cyst-like 
object in a meaningful way, the algorithm should 
be coupled with other solutions, which can 

Figure. 6. Selected results obtained from segmentation on the test dataset. The numbers on 
represent the DICE coefficient. Colors correspond to the following: “green” – segmentation 

only, “violet” – ground truth only, “cyan” – ground truth and segmentation

Figure. 7. The contour plot detailing the DICE obtained on the training set with regards to the 
two trainable parameters of the procedure: thr1 – threshold #1 and thr2 – threshold #2
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transform the segmented image into a geometri-
cally-optimal target point for aspiration or even 
compute the minimally-invasive path for the nee-
dle, such as in [27]. Furthermore, the generally 
good results under very limited training data sig-
nify that the method could potentially be used to 
automatically generate larger datasets for training 
more robust algorithms, with deep learning being 
one of the primary examples. 

CONCLUSIONS

To summarize, the paper featured a train-
able procedure for segmenting cyst-like objects 
in soft-tissue phantoms based on gelatin using 
limited number of training samples. The data-
set was registered using an US device, while the 
procedure was tested under different seeds of the 
random number generator. The obtained results 
suggested the viability of the procedure. The 
DICE coefficients were on average at 0.92 over 
60 reruns of the test/train procedure, while in the 
best cases exceeded 0.95. Nonetheless, the data-
set was focused on cyst-like structures and might 
not represent other medical cases studied using 
soft tissue phantoms. The procedure was based on 
the assumption that the cyst-objects were close to 
convex, which should also be taken into account.
The proposed method could be employed in sys-
tems for testing medical robots as well as frame-
works for surgeon training, especially in regard to 
augmented visualization of tissues.
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