PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Energy consumption and efficiency degradation predictive analysis in unmanned aerial vehicle batteries using deep neural networks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The unmanned aerial vehicles (UAVs) needs efficient energy management to ensure optimal performance and flight time. In this paper, the energy consumption and efficiency degradation in DJI Mini 2 drone batteries by the use of a deep neural network (DNN) for predictive analysis, was concern. The research conducted repeated flights and monitoring battery discharge from 100% to 27% over 20 trials. Experimental conditions, including flight duration and environmental factors, were controlled to ensure repeatability and to minimize any external influences on the recorded data. Data were stored onto AIRDATA (drone logbook) and then recollected for new labeling. The initial flights demonstrated similar, near constant performance, while following flights showed a gradual reduction in flight time (performance degradation). To ensure comparable power usage and minimize external influences, hover mode was selected for all flights. Next, on this data the DNN was trained using the metrics of mean squared error (MSE), root mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), coefficient of variation of the root mean squared error (CVRMSE), and determination coefficient (R²). The trained model achieved the MSE of 0.352%, RMSE of 0.593%, MAE of 0.324%, MAPE of 0.857%, CVRMSE of 0.743%, and R² of 0.981. The obtained results show the DNN’s ability to predict future power consumption for the UAV that in turn provides insights for energy management and extension of battery life. The paper contributes to the development of sustainable UAV operations by better knowledge about battery performance for in-flight conditions.
Twórcy
  • Mechanical Engineering Department, University of Technology-Iraq, Baghdad, Iraq
  • Institute of Mechanical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45C, 15-351 Bialystok, Poland
  • Department of Chemical Engineering and Petroleum Industries, Al‐Mustaqbal University College, Hillah, Iraq
  • Department of Computer-Aided Design Systems, Lviv Polytechnic National University, 79013 Lviv, Ukraine
  • Mechanical Engineering Department, University of Technology-Iraq, Baghdad, Iraq
  • Mechanical Engineering Department, University of Technology-Iraq, Baghdad, Iraq
  • Faculty of Automatic Control, Robotics and Electrical Engineering, Institute of Robotics and Machine Intelligence, Poznan University of Technology, Poland
Bibliografia
  • 1. Rodríguez-Garlito E.C., Pax-Gallardo A. Efficiently mapping large areas of olive trees using drones in extremadura Spain. IEEE Journal on Miniaturization for Air and Space Systems, 2021; 2(3), 148–156. https://doi.org/10.1109/JMASS.2021.3067102.
  • 2. Zuo A., Wheeler S.A., Sun H., Flying over the farm: understanding drone adoption by Australian irrigators, Precision Agriculture, 2021; 22, 1973–1991, https://doi.org/10.1007/s11119-021-09821-y.
  • 3. Kotarski D., Piljek P., Pranjic M., Kasac J. Toward modular aerial robotic system for applications in precision agriculture, 2022 International Conference on Unmanned Aircraft Systems (ICUAS), Durovnik, Croatia 2022; 21–24, 1530–1537, https:// doi.org/10.1109/ICUAS54217.2022.9836108.
  • 4. Lee K., Han X.A. Study on leveraging unmanned aerial vehicle collaborative driving and aerial photography systems to improve the accuracy of cropphenotyping, remote sensing. 2023; 15(15), 3903, https://doi.org/10.3390/rs15153903.
  • 5. Garg V., Niranjan S., Prybutok V., Pohlen T., Gligor D. Drones in last-mile delivery: A systematic review on Efficiency. Accessibility, and Sustainability, Transportation Research Part D: Transport and Environment, 2023; 123, 103831, https://doi.org/10.1016/j.trd.2023.103831.
  • 6. Asadzadeh S., de Oliveira W.J., de Souza Filho C.R., UAV-based remote sensing for the petroleum industry and environmental monitoring: State-of-the-art and perspectives, Journal of Petroleum Scince and Engineering 2022; 208, 109633, https:// doi.org/10.1016/j.petrol.2021.109633.
  • 7. Tian W., Liu L., Zhang X., Shao J., Ge J., Adaptive hierarchical energy management strategy for fuel cell/battery hybrid electric UAVs, Aerospace Science and Technology 2024; 146, 108938, https:// doi.org/10.1016/j.ast.2024.108938.
  • 8. Tian W., Liu L., Zhang X., Shao J., Ge J., A coordinated optimization method of energy management and trajectory optimization for hybrid electric UAVs with PV/Fuel Cell/Battery. International Journal of Hydrogen Energy 2024; 50, 1110–1121, https://doi. org/10.1016/j.ijhydene.2023.11.030.
  • 9. Steup C., Parlow S., Mai S. Mostaghim S. Generic component-based mission-centric energy model for micro-scale unmanned aerial vehicles, drones, 2020; 4(4), 63. https://doi.org/10.3390/drones4040063.
  • 10. Speranza N.A., Rave C.J., Pei Y. Energy-efficient on-platform target classification for electric air transportation systems, electricity 2021; 2(2), 110– 123, https://doi.org/10.3390/electricity2020007.
  • 11. Krznar M., Piljek P., Kotarski D., Pavković D. Modeling, control system design and preliminary experimental verification of a hybrid power unit suitable for multirotor UAVs. Energies 2021; 14(9), 2669, https://doi.org/10.3390/en14092669.
  • 12. Suti A., Di Rito G., Mattei G. Development and experimental validation of novel thevenin-based hysteretic models for li-po battery packs employed in fixed-wing UAVs. Energies, 15(23), 9249. https:// doi.org/10.3390/en15239249.
  • 13. Andrioaia D.A., Gaitan V.G., Culea G., Banu I.V. Predicting the RUL of Li-Ion Batteries in UAVs Using Machine Learning Techniques. Computers 2024; 13(3), 64. https://doi.org/10.3390/ computers13030064.
  • 14. Mansouri S.S., Karvelis P., Georgoulas G., Nikolakopoulos G. Remaining useful battery life predicion for UAVs based on machine learning. IFAC PapersOnLine 2017; 50, 4727–4732, https://doi.org/ 10.1016/j.ifacol.2017.08.863.
  • 15. Manjarrez L.H., Ramos-Fernández J.C., Espinoza E.S., Lozano R. Estimation of energy consumption and flight time margin for a UAV mission based on fuzzy systems. Technologies 2023; 11(1), 12. https://doi.org/10.3390/technologies11010012.
  • 16. Tang D.Y., Gong M.T., Yu J.S., Li X.A power transfer model-based method for lithium-ion battery discharge time prediction of electric rotatory-wing UAV. Microelectronics Reliability 2020; 114, 113832, https://doi.org/10.1016/j.microrel.2020.113832.
  • 17. Ai S., Song J., Cai G. Sequence-to-sequence remaining useful life prediction of the highly maneuverable unmanned aerial vehicle: a multilevel fusion transformer network solution. Mathematics 2022; 10(10), 1733, https://doi.org/10.3390/ math10101733.
  • 18. Stanković M., Mirza M.M., Karabiyik U. UAV forensics: DJI mini 2 case study, Drones 2021; 5(2), 49, https://doi.org/10.3390/drones5020049.
  • 19. Al-Haddad, L.A., Giernacki, W., Basem, A., Khan, Z. H., Jaber, A. A., Al-Haddad, S.A. UAV propeller fault diagnosis using deep learning of non-traditional χ2-selected Taguchi method-tested Lempel–Ziv complexity and Teager–Kaiser energy features. Scientific Reports 2024; 14(1), 18599. https://doi. org/10.1038/s41598-024-69462-9.
  • 20. Al-Haddad, L.A., Jaber, A.A., Mahdi, N.M., Al- Haddad, S.A., Al-Karkhi, M.I., Al-Sharify, Z.T., Farhan Ogaili, A.A. Protocol for UAV fault diagnosis using signal processing and machine learning. STAR Protocols 2024; 5(4). https://doi. org/10.1016/j.xpro.2024.103351
  • 21. Yang C.-C., Chuang H., Kao D.-Y. Drone forensic analysis using relational flight data: a case study of DJI spark and mavic air Procedia Computer Science 2021; 192, 1359–1368, https://doi.org/10.1016/j. procs.2021.08.139.
  • 22. Hodson, T.O. Root mean square error (RMSE) or mean absolute error (MAE): When to use them or not. Geoscientific Model Development Discussions 2022; 15(14), 5481–5487. https://doi.org/10.5194/ gmd-15-5481-2022.
  • 23. Singh H.P. Vishwakarma G.K., Joshi H., Gupta S. Shrinkage estimation for square of location parameter of the exponential distribution with known coefficient of variation. Journal of Computational and Applied Mathematics 2024; 437, 115489, https:// doi.org/10.1016/j.cam.2023.115489.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5538ae28-3dee-42a2-a912-3a4049a61dff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.