Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Collisions and groundings account for more than 80% among all types of maritime accidents, and risk assessment is an essential step in the formal safety assessment. This paper proposes a method based on fuzzy fault tree analysis and Noisy-OR gate Bayesian network for navigational risk assessment. First, a fault tree model was established with historical data, and the probability of basic events is calculated using fuzzy sets. Then, the Noisy-OR gate is utilized to determine the conditional probability of related nodes and obtain the probability distribution of the consequences in the Bayesian network. Finally, this proposed method is applied to Qinzhou Port. From sensitivity analysis, several predominant influencing factors are identified, including navigational area, ship type and time of the day. The results indicate that the consequence is sensitive to the position where the accidents occurred. Consequently, this paper provides a practical and reasonable method for risk assessment for navigational accidents.
Rocznik
Tom
Strony
765--771
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
autor
- Intelligent Transportation System Research Center (ITSC), Wuhan, China
- National Engineering Research Center for Water Transport Safety, Wuhan, China
- Wuhan University of Technology, Wuhan, China
autor
- Intelligent Transportation System Research Center (ITSC), Wuhan, China
- National Engineering Research Center for Water Transport Safety, Wuhan, China
- Wuhan University of Technology, Wuhan, China
autor
- Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
autor
- Shenzhen CIMC Intelligent Technology Co. Ltd., Shenzhen, China
Bibliografia
- 1. Arici, S.S., Akyuz, E., Arslan, O.: Application of fuzzy bow-tie risk analysis to maritime transportation: The case of ship collision during the STS operation. Ocean Engineering. 217, 107960 (2020). - doi:10.1016/j.oceaneng.2020.107960.
- 2. Chen, S.-J., Hwang, C.-L.: Fuzzy Multiple Attribute Decision Making: Methods and Applications. Springer-Verlag, Berlin Heidelberg (1992). - doi:10.1007/978-3-642-46768-4.
- 3. Erol, S., Demir, M., Çetişli, B., Eyüboğlu, E.: Analysis of Ship Accidents in the Istanbul Strait Using Neuro-Fuzzy and Genetically Optimised Fuzzy Classifiers. Journal of Navigation. 71, 2, 419–436 (2018). - doi:10.1017/S0373463317000601.
- 4. Feng, X., Jiang, J., Wang, W.: Gas pipeline failure evaluation method based on a Noisy-OR gate bayesian network. Journal of Loss Prevention in the Process Industries. 66, 104175 (2020). - doi:10.1016/j.jlp.2020.104175.
- 5. Oniśko, A., Druzdzel, M.J., Wasyluk, H.: Learning Bayesian network parameters from small data sets: application of Noisy-OR gates. International Journal of Approximate Reasoning. 27, 2, 165–182 (2001). - doi:10.1016/S0888-613X(01)00039-1.
- 6. Ozturk, U., Cicek, K.: Individual collision risk assessment in ship navigation: A systematic literature review. Ocean Engineering. 180, 130–143 (2019). - doi:10.1016/j.oceaneng.2019.03.042.
- 7. Peng, X., Yao, D., Liang, G., Yu, J., He, S.: Overall reliability analysis on oil/gas pipeline under typical third-party actions based on fragility theory. Journal of Natural Gas Science and Engineering. 34, 993–1003 (2016). - doi:10.1016/j.jngse.2016.07.060.
- 8. Rajakarunakaran, S., Maniram Kumar., A., Arumuga Prabhu, V.: Applications of fuzzy faulty tree analysis and expert elicitation for evaluation of risks in LPG refuelling station. Journal of Loss Prevention in the Process Industries. 33, 109–123 (2015). - doi:10.1016/j.jlp.2014.11.016.
- 9. Shabarchin, O., Tesfamariam, S.: Internal corrosion hazard assessment of oil & gas pipelines using Bayesian belief network model. Journal of Loss Prevention in the Process Industries. 40, 479–495 (2016). - doi:10.1016/j.jlp.2016.02.001.
- 10. Vinod, G., Kushwaha, H.S., Verma, A.K., Srividya, A.: Importance measures in ranking piping components for risk informed in-service inspection. Reliability Engineering & System Safety. 80, 2, 107–113 (2003). - doi:10.1016/S0951-8320(02)00270-3.
- 11. Wang, D., Zhang, P., Chen, L.: Fuzzy fault tree analysis for fire and explosion of crude oil tanks. Journal of Loss Prevention in the Process Industries. 26, 6, 1390–1398 (2013). - doi:10.1016/j.jlp.2013.08.022.
- 12. Wang, L.X.: A course on fuzzy systems and control. (1996).
- 13. Wang, Y., Zio, E., Wei, X., Zhang, D., Wu, B.: A resilience perspective on water transport systems: The case of Eastern Star. International Journal of Disaster Risk Reduction. 33, 343–354 (2019). - doi:10.1016/j.ijdrr.2018.10.019.
- 14. Wróbel, K., Montewka, J., Kujala, P.: Towards the assessment of potential impact of unmanned vessels on maritime transportation safety. Reliability Engineering & System Safety. 165, 155–169 (2017). - doi:10.1016/j.ress.2017.03.029.
- 15. Wu, B., Yip, T.L., Yan, X., Mao, Z.: A Mutual Information-Based Bayesian Network Model for Consequence Estimation of Navigational Accidents in the Yangtze River. Journal of Navigation. 73, 3, 559–580 (2020). - doi:10.1017/S037346331900081X.
- 16. Zadeh, L.A.: Fuzzy sets. Information and Control. 8, 3, 338–353 (1965). - doi:10.1016/S0019-9958(65)90241-X.
- 17. Zhang, D., Yan, X., Zhang, J., Yang, Z., Wang, J.: Use of fuzzy rule-based evidential reasoning approach in the navigational risk assessment of inland waterway transportation systems. Safety Science. 82, 352–360 (2016). - doi:10.1016/j.ssci.2015.10.004.
- 18. Zhang, J., Teixeira, Â.P., Guedes Soares, C., Yan, X., Liu, K.: Maritime Transportation Risk Assessment of Tianjin Port with Bayesian Belief Networks. Risk Anal. 36, 6, 1171–1187 (2016). - doi:10.1111/risa.12519.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-55351f28-0f99-4827-8dc2-b87aa938a7ab