PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and Theoretical Investigation of Galvanized Steel and Fiber-Reinforced Polymer Composites Textile Adhesive Double Lap Joints

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents an experimental analysis of CFRP fabric to galvanized steel adhesive connection. An experimental research has been conducted on the adhesive connection between CFRP fabric and galvanized steel subjected to shear forces. The specimens were made from the steel plates overlapped on both sides with SikaWrap 230 C fabric using SikaDur 330 adhesive. Observations of natures of failure for CFRP-Steel adhesive connection were conducted based on visual inspection using a scanning microscope. Mixed nature of the connection failure was specified. Moreover, an advanced numerical model has been developed and later on validated and verified on the basis of performed original laboratory tests. Ultimately, final conclusions were drawn based on the advanced numerical model that has been developed, verified and validated using laboratory tests results, as well as analytical models and nature of the connection failure was specified.
Słowa kluczowe
Twórcy
  • Faculty of Civil and Transport Engineering, Poznań University of Technology, ul. Marii Skłodowskiej-Curie 5, 60-965 Poznań, Poland
  • Faculty of Civil and Transport Engineering, Poznań University of Technology, ul. Marii Skłodowskiej-Curie 5, 60-965 Poznań, Poland
Bibliografia
  • 1. Zhao X., Zhang L. State-of-the-art review on FRP strengthened steel structures. Engineering Structures. 2007; 29(8): 1808–1823.
  • 2. Gholami M., Sam A., Yatim J., Tahir M. A review on steel/CFRP strengthening systems focusing environmental performance. Construction and Building Materials. 2013; 47: 301–310.
  • 3. Tafsirojjaman T., Ur Rahman Dogar A., Liu Y., Manalo A., Thambiratnam D.P. Performance and design of Steel Structures Reinforced with FRP Composites: A state-of-the-art review. Engineering Failure Analysis. 2022; 138: 106371. DOI: 10.1016/j.engfailanal.2022.106371
  • 4. Bambach M., Elchalakani M. Plastic mechanism analysis of steel SHS strengthened with CFRP under large axial deformation. Thin-Walled Structures. 2007; 45(2): 159–170.
  • 5. Bambach M., Jama H., Elchalakani M. Axial capacity and design of thin-walled steel SHS strengthened with CFRP. Thin-Walled Structures. 2009; 47(10): 1112–1121.
  • 6. Bambach M. Numerical simulation of the shock spalling failure of bonded fibre–epoxy strengthening systems for metallic structures. Engineering Structures. 2014; 64: 1–11.
  • 7. Szewczak I., Rzeszut K., Rozylo P., Samborski S. Laboratory and Numerical Analysis of Steel Cold Formed Sigma Beams Retrofitted by Bonded CFRP Tapes. Materials. 2020; 13(19): 4339.
  • 8. Szewczak I., Rozylo P., Rzeszut K. Influence of Mechanical Properties of Steel and CFRP Tapes on the Effectiveness of Strengthening Thin-Walled Beams. Materials. 2021; 14(9): 2388.
  • 9. Tafsirojjaman T., Fawzia S., Thambiratnam D., Zhao X. FRP strengthened SHS beam-column connection under monotonic and large-deformation cyclic loading. Thin-Walled Structures. 2021; 161: 107518.
  • 10. Sanginabadi K., Mostofinejad D. Effect of aggregate content on the CFRP-concrete effective bond length: An experimental and analytical study. Composite Structures. 2021; 269: 114044.
  • 11. Yun Y., Wu Y. Durability of CFRP–concrete joints under freeze–thaw cycling. Cold Regions Science and Technology. 2011; 65(3): 401–412.
  • 12. Zhang W., Tang Z. Numerical Modeling of Response of CFRP–Concrete Interfaces Subjected to Fatigue Loading. Journal of Composites for Construction. 2021; 25(5).
  • 13. Zaki M., Rasheed H., Alkhrdaji T. Performance of CFRP-strengthened concrete beams fastened with distributed CFRP dowel and fiber anchors. Composites Part B: Engineering. 2019; 176: 107117.
  • 14. Li G., Tan K., Fung T. Experimental study on CFRP concrete dynamic debonding behaviour. Engineering Structures. 2020; 206: 110055.
  • 15. Teng J., Yu T., Fernando D. Strengthening of steel structures with fiber-reinforced polymer composites. Journal of Constructional Steel Research. 2012; 78: 131–143.
  • 16. ISO 4624:2016 – Paints and varnishes – Pull-off test for adhesion
  • 17. Cantwell W.J., Morton J. The impact resistance of composite materials – A review. Composites. 1991; 22(5): 347–62. DOI: 10.1016/0010-4361(91)90549-v
  • 18. Ren H., Chen X., Chen Y. Aircraft reliability and maintainability analysis and design. In: Reliability Based Aircraft Maintenance Optimization and Applications. Elsevier. 2017; 37–78.
  • 19. da Silva L.F.M., das Neves P.J.C., Adams R.D., Spelt J.K. Analytical models of adhesively bonded joints – part I: Literature survey. International Journal of Adhesion and Adhesives. 2009; 29(3): 319–30. DOI: 10.1016/j.ijadhadh.2008.06.005
  • 20. Marchione F. Stress distribution in double-lap adhesive joints: Effect of adherend reinforcement layer. International Journal of Adhesion and Adhesives. 2021; 105: 102780. doi:10.1016/j.ijadhadh.2020.102780
  • 21. Shin K.C., Lee J.J. Bond parameters affecting failure of co-cured single and double lap joints sub- jected to static and dynamic tensile loads. European Structural Integrity Society. 2003; 373–84. DOI: 10.1016/s1566-1369(03)80110-3
  • 22. Hou X., Yousefi Kanani A., Ye J. Double lap adhesive joint with reduced stress concentration: Effect of slot. Composite Structures. 2018; 202: 635–42. DOI: 10.1016/j.compstruct.2018.03.026
  • 23. EN ISO 6892-1:2020 – Metallic materials – Tensile testing - Part 1: Method of test at room temperature
  • 24. [Internet]. Gcc.sika.com. 2022 [cited 3 September 2022]. Available from: https://gcc.sika.com/content/dam/dms/gcc/j/sikawrap_-230_c.pdf
  • 25. [Internet]. Usa.sika.com. 2022 [cited 3 September 2022]. Available from: https://usa.sika.com/content/ dam/dms/us01/0/sikadur_-330.pdf
  • 26. De Lorenzis L., Fernando D., Teng J.-G. Coupled mixed-mode cohesive zone modeling of interfacial debonding in simply supported plated beams. International Journal of Solids and Structures. 2013; 50(14-15): 2477–94.
  • 27. de Morais A.B. Mode I cohesive zone model for delamination in composite beams. Engineering Fracture Mechanics. 2013; 109: 236–45.
  • 28. Monteiro J., Akhavan-Safar A., Carbas R., Marques E., Goyal R., El-zein M., et al. Mode II modeling of adhesive materials degraded by fatigue loading using cohesive zone elements. Theoretical and Applied Fracture Mechanics. 2019; 103: 102253.
  • 29. Högberg J. Mixed mode cohesive law. International Journal of Fracture. 2006; 141(3–4): 549–559.
  • 30. Benamar B., Mokhtari M., Madani K., Benzaama H. Using a cohesive zone modeling to predict the compressive and tensile behavior on the failure load of single lap bonded joint. Frattura ed Integrità Strutturale. 2019; 19; 13(50): 112–25.
  • 31. Turon A., Dávila C.G., Camanho P.P., Costa J. An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Engineering Fracture Mechanics. 2007; 74(10): 1665–82.
  • 32. Teng J.G., Fernando D., Yu T. Finite element modelling of debonding failures in steel beams flexurally strengthened with CFRP laminates. Engineering Structures. 2015; 86: 213–24.
  • 33. Xia S., Teng J. Behaviour of FRP-to-Steel Bonded joints. International Symposium on Bond Behaviour of FRP in Structures (BBFS 2005). 2005. Hong Kong. China, 419–426.
  • 34. Raza A., Khan Q. uz Z., Ahmad A. Prediction of Axial Compressive Strength for FRP-Confined Concrete Compression Members. KSCE Journal of Civil Engineering. 2020; 24(7): 2099–109.
  • 35. Abaqus Unified FEA [Internet]. 3ds.com. [cited 2022 Nov 22]. Available from: https://www.3ds. com/products-services/simulia/products/abaqus/ 36. de Bruyne NA. The strength of glued joints. Aircraft Engineering and Aerospace Technology. 1944;
  • 36. de Bruyne NA. The strength of glued joints. Aircraft Engineering and Aerospace Technology. 1944; 16(4): 115–8.
  • 37. Oplinger D.W. Effects of adherend deflections in single lap joints. International Journal of Solids and Structures. 1994; 31(18): 2565–87.
  • 38. Tsai M.Y., Oplinger D.W., Morton J. Improved theoretical solutions for adhesive lap joints. International Journal of Solids and Structures. 1998; 35(12): 1163–85.
  • 39. Volkersen O. Die Niektraftverteilung in Zugbeanspruchten mit Konstanten Laschenquerschritten. Luftfahrtforschung. 1938; 15: 41–47.
  • 40. Gonçalves D.C., Sánchez-Arce I.J., Ramalho L.D., Campilho R.D., Belinha J. Introductory application of a natural neighbour meshless elastic formulation to double-lap adhesive joints. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2022; 44(2).
  • 41. Quispe Rodríguez R., de Paiva W.P., Sollero P., Bertoni Rodrigues M.R., de Albuquerque É.L. Failure criteria for adhesively bonded joints. International Journal of Adhesion and Adhesives. 2012; 37: 26–36.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-55318777-69ea-40b4-81b7-e6e7a70a0cb6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.