PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kinetics of static recrystallization in the coarse-grained Fe–40 at.%Al–Zr–B alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of works was to describe mathematically the kinetics of static recrystallization of the alloy type Fe–40 at.%Al–Zr–B (with 24.6 Al–0.01 B–0.18 Zr–0.01 C in wt.%) with the coarse-grained structure. The microstructure of the laboratory castings made of this extremely brittle alloy was homogenized by hot rolling of the material in the protective capsules and by the long-term annealing at 1200 °C. An initial microstructure with average grain size 0.77 ± 0.27 mm was obtained. Based on the isothermal plastic deformation tests and EBSD analysis, the static recrystallization kinetics of the prepared coarse-grained B2 iron aluminide after strain 0.20 was mathematically described. Recrystallized fraction depends on deformation/annealing temperature (900–1100 °C) as well as on annealing time. The activation energy of static recrystallization was calculated as 255 kJ mol−1. Competition between dynamic recovery and static recrystallization was proved after strain 0.35 and annealing temperature 1100 °C. Static recrystallization starts relatively easily in the studied alloy, but a very long-term annealing is quite necessary for the complete course of recrystallization. The mean size of recrystallized grains falls with the decreasing annealing temperature (0.47 ± 0.15 mm for temperature 1100 °C, and 0.22 ± 0.04 mm for 900 °C). Even at a temperature of 1200 °C the annealing after deformation should last approx. 1 min for obtaining the fully recrystallized microstructure. That is why the standard hot forming technologies should be combined by an interpass annealing in order to refine sufficiently the coarse grains.
Rocznik
Strony
816--826
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
autor
  • VSB – Technical University of Ostrava, Faculty of Metallurgy and Materials Engineering, 17. listopadu 15, 708 33 Ostrava, Czech Republic
autor
  • Institute of Physics AS CR, v. v. i., Na Slovance 1999/2, 182 21 Praha 8, Czech Republic
autor
  • VSB – Technical University of Ostrava, Faculty of Metallurgy and Materials Engineering, 17. listopadu 15, 708 33 Ostrava, Czech Republic
  • Silesian University of Technology, Faculty of Metallurgy and Materials Engineering, Krasińskiego 8, 40-019 Katowice, Poland
autor
  • Silesian University of Technology, Faculty of Metallurgy and Materials Engineering, Krasińskiego 8, 40-019 Katowice, Poland
autor
  • Military University of Technology, ul. Gen. Sylvester Kaliski 2, 00-908 Warsaw 49, Poland
autor
  • VSB – Technical University of Ostrava, Faculty of Metallurgy and Materials Engineering, 17. listopadu 15, 708 33 Ostrava, Czech Republic
autor
  • Technical University of Liberec, Faculty of Mechanical Engineering, Studentska 1402/2, 461 17 Liberec I, Czech Republic
autor
  • Military University of Technology, ul. Gen. Sylvester Kaliski 2, 00-908 Warsaw 49, Poland
autor
  • Military University of Technology, ul. Gen. Sylvester Kaliski 2, 00-908 Warsaw 49, Poland
Bibliografia
  • [1] D.G. Morris, M.A. Muňoz-Morris, Recent developments toward the application of iron aluminides in fossil fuel technologies, Advanced Engineering Materials 13 (1–2) (2011) 43–47.
  • [2] S.C. Deevi, V.K. Sikka, Nickel and iron aluminides: an overview on properties, processing and applications, Intermetallics 4 (5) (1996) 357–375.
  • [3] J. Bystrzycki, Static recrystallization of shock-wave (explosively) deformed Fe–40 at% Al–Zr–B intermetallic, Intermetallics 8 (2) (2000) 89–98.
  • [4] N.S. Stoloff, C.T. Liu, S.C. Deevi, Emerging applications of intermetallics, Intermetallics 8 (9–11) (2000) 1313–1320.
  • [5] Y.D. Huang, W.Y. Yang, Z.Q. Sun, Improvement of room temperature tensile properties for Fe3Al-based alloys by thermomechanical and annealing processes, Materials Science and Engineering A 263 (1) (1999) 75–84.
  • [6] R.S. Sundar, R.G. Baligidad, Y.V.R.K. Prasad, D.H. Sastry, Processing of iron aluminides, Materials Science and Engineering: A 258 (1–2) (1998) 219–228.
  • [7] I. Schindler, P. Kratochvil, P. Hanus, P. Kozelsky, Hot rolling and deformation behavior of Fe17Al4Cr0.3Zr alloy, High Temperature Materials and Processes 29 (1–2) (2010) 19–25.
  • [8] M. Jabłońska, A. Jasik, A. Hanc, Structure and some mechanical properties of Fe3Al-based cast alloys, Archives of Metallurgy and Materials 54 (3) (2009) 731–739.
  • [9] I. Bednarczyk, M. Jabłońska, Plasticity of low aluminium alloys from Fe–Al, Archives of Metallurgy and Materials 57 (1) (2012) 271–276.
  • [10] M. Jabłońska, A. Hanc, A. Szostak, A study of points defects in the B2-phase region of Fe–Al system by Mössbauer spectroscopy, Solid State Phenomena 163 (2010) 299–302.
  • [11] I. Schindler, P. Kratochvíl, P. Prokopčáková, P. Kozelský, Forming of cast Fe–45 at.% Al alloy with high content of carbon, Intermetallics 18 (4) (2010) 745–747.
  • [12] I. Schindler, V. Šumšal, P. Hanus, Hot rolling of brittle aluminide of type Fe–40Al–Zr–B, Hutnické listy 64 (6) (2011) 56–61.
  • [13] I. Schindler, R. Kawulok, H. Kulveitová, P. Kratochvíl, V. Šíma, M. Knapiński, Activation energy in hot forming of selected Fe–40 at.%Al type intermetallic compounds, Acta Physica Polonica A 122 (3) (2012) 610–613.
  • [14] Y. Kaneno, T. Yamaguchi, T. Takasugi, Texture evolution during hot-rolling and recrystallization in B2-type FeAl, NiAl and CoTi intermetallic compounds, Journal of Materials Science 41 (20) (2006) 6871–6880.
  • [15] I. Schindler, S. Rusz, R. Kawulok, P. Kawulok, M. Subíková, M. Cagala, Homogenization of microstructure of castings from the alloy Fe–40 at.%Al–Zr–B, Materials Science Forum 782 (2014) 87–92.
  • [16] M. Jabłońska, I. Bednarczyk, K. Rodak, A. Śmiglewicz, Study of the structure of intermetallics from Fe–Al system after the hot rolling, Metalurgija 55 (1) (2016) 67–71.
  • [17] I. Samajdar, P. Ratchev, B. Verbden, D. Schryvers, Recrystallization and grain growth in a B2 iron aluminide alloy, Intermetallics 6 (5) (1998) 419–425.
  • [18] Y.V.R.K. Prasad, D.H. Sastry, S.C. Deevi, Processing maps for hot working of a P/M iron aluminide alloy, Intermetallics 8 (9–11) (2000) 1067–1074.
  • [19] M.R. Hajaligol, S.C. Deevi, V.K. Sikka, C.R. Scorey, A thermomechanical process to make iron aluminide (FeAl) sheet, Materials Science and Engineering A 258 (1–2) (1998) 249–257.
  • [20] D.G. Morris, S.C. Deevi, Evolution of microstructure and texture during industrial processing of FeAl sheets, Materials Science and Engineering A 329–331 (1998) 573–581.
  • [21] I. Baker, P.R. Munroe, Mechanical properties of FeAl, International Materials Reviews 42 (5) (1997) 181–205.
  • [22] P. Haušild, M. Karlík, V. Šíma, D.T.L. Alexander, Microstructure and mechanical properties of hot rolled Fe– 40 at.% Al intermetallic alloys with Zr and B addition, Materials Science and Technology 27 (9) (2011) 1448–1452.
  • [23] I. Schindler, S. Rusz, P. Hanus, J. Kopeček, Static recrystallization of intermetallic compound of the type Fe– 40 at.%Al–Zr–B, in: 22nd International Conference on Metallurgy and Materials METAL 2013, 2013.
  • [24] V. Šíma, P. Kratochvíl, P. Kozelský, I. Schindler, P. Hána, FeAl- based alloys cast in an ultra-sound field, International Journal of Materials Research 100 (3) (2009) 382–385.
  • [25] I. Schindler, V. Šumšal, J. Kopeček, P. Kawulok, P. Józwik, S. Rusz, R. Kawulok, P. Opěla, Model of static recrystallization in the coarse-grained B2 iron aluminide, in: 23rd International Conference on Metallurgy and Materials METAL 2014, 2014.
  • [26] G. Wang, L. Xu, Y. Wang, Z. Zheng, Y. Cui, R. Yang, Processing maps for hot working behavior of a PM TiAl alloy, Journal of Materials Science and Technology 27 (10) (2011) 893–898.
  • [27] R. Łyszkowski, J. Bystrzycki, Hot deformation and processing maps of a Fe–Al intermetallic alloy, Materials Characterization 96 (2014) 196–205.
  • [28] W.A. Johnson, R.F. Mehl, Reaction kinetics in processes of nucleation and growth, Transactions AIME 135 (1939) 416–442.
  • [29] M. Avrami, Kinetics of phase change, Journal of Chemical Physics 7 (1939) 1103–1112.
  • [30] A.N. Kolmogorov, On the statistical theory of metal crystallization, (in Russian), Izvestiya Akademii Nauk SSSR, Seriya Matematicheskaya 3 (1937) 355–359.
  • [31] F.J. Humpreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, Pergamon Press, Oxford, 2002.
  • [32] P. Kratochvíl, I. Schindler, P. Hanus, R. Král, P. Harcuba, Static recrystallization of cold rolled intermetallic Fe17Al4Cr0.3Zr alloy, Journal of Materials Engineering and Performance 21 (9) (2012) 1932–1936.
  • [33] S. Wang, S.B. Kang, J.H. Cho, Effect of hot compression and annealing on microstructure evolution of ZK60 magnesium alloys, Journal of Materials Science 44 (2009) 5475–5484.
  • [34] Y.V.R.K. Prasad, D.H. Sastry, R.S. Sundar, S.C. Deevi, Optimization of Hot Workability and Hot Deformation Mechanisms in FeAl and Fe3Al Based Alloys, Structural Intermetallics (Jackson hole), 2001.
  • [35] Y. Yang, I. Baker, Recrystallization of FeAl and Ni3Al with and without boron, Scripta Materialia 34 (5) (1996) 803–807.
  • [36] I. Schindler, E. Hadasik, J. Kopeček, P. Kawulok, R. Fabík, P. Opěla, S. Rusz, R. Kawulok, M. Jabłońska, Optimization of laboratory hot rolling of brittle Fe–40 at.%Al–Zr–B aluminide, Archives of Metallurgy and Materials 60 (3) (2015) 1693–1701.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-55298524-419f-48a2-a21e-8bc3441655c7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.