PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical and Microstructural Characterization of Aluminium Alloy, EN AC-Al Si12CuNiMg

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
the manufacture of mechanical structures where low weight is critical. However, when these alloys are subjected to elevated temperatures, their mechanical properties deteriorate significantly. The aim of this study is to investigate the effect of temperature on the mechanical properties of aluminium alloy, EN AC-Al Si12CuNiMg. For this purpose, an experimental investigation was performed at ambient and elevated temperatures on aluminium alloy samples prepared by casting. Tensile and hardness tests were carried out to characterize the mechanical properties of this material. Additionally, an optical microscope was used to examine the microstructures of this alloy. Finally, a scanning electron microscope was used to analyze the fracture modes of this material. The results show that the mechanical properties such as tensile strength, yield strength, and Young's modulus of this alloy dramatically decrease when the temperature exceeds 250oC. The microstructural investigation reveals several factors that are detrimental to the mechanical properties of this alloy. This includes coarse-grained structures, micro-pores, and several intermetallic compounds. Furthermore, fractography reveals a minor cleavage-like pattern and micro-cracks on the fracture surface of all failed samples under various temperatures, indicating semi-brittle fracture mode.
Rocznik
Strony
34--40
Opis fizyczny
Bibliogr. 26 poz., il., tab., wykr.
Twórcy
  • Faculty of Materials Engineering, Silesian University of Technology, Katowice, Poland
  • Faculty of Materials Engineering, Silesian University of Technology, Katowice, Poland
autor
  • Faculty of Materials Engineering, Silesian University of Technology, Katowice, Poland
Bibliografia
  • [1] Kumar, N., Gautam, G., Mohan, A. & Mohan, S. (2018). High temperature tensile and strain hardening behaviour of AA5052/9 vol.% ZrB2 insitu composite. Materials Research. 21(5), 1-7. DOI: 10.1590/1980-5373-MR-2017-0860.
  • [2] Sahin, H., Atik, M., Tezer, F., Temel, S., Aydin, O., Kesen, O., Gursoy, O. & Dispinar, D. (2021). Prediction of fracture stress with regard to porosity in cast A356 alloy. Archives of Foundry Engineering. 21(4), 21-28. DOI: 10.24425/afe.2021.138675.
  • [3] Kahrıman, F. U. & Zeren, M. (2017). Microstructural and mechanical characterization of Al-0.80 Mg-0.85 Si-0.3 Zr Alloy. Archives of Foundry Engineering. 17(4), 73-78. DOI: 10.1515/afe-2017-0133.
  • [4] Triyono, T., Muhayat, N., Supriyanto, A. & Lutiyatmi, L. (2017). Effect of degassing treatment on the interfacial reaction of molten aluminum and solid steel. Archives of Foundry Engineering. 17(2), 227-239. DOI: 10.1515/afe-2017-0080.
  • [5] de Rosso, E., dos Santos, C. A. & Garcia, A. (2021). Microstructure, hardness, tensile strength, and sliding wear of hypoeutectic Al–Si cast alloys with small Cr additions and Fe-impurity content. Advanced Engineering Materials. 2001552, 1-13. DOI: 10.1002/adem.202001552.
  • [6] Białobrzeski, A. (2007). Continuous sodium modification of nearly-eutectic aluminium alloys. Part I. Theoretical backgrounds of the process. Archives of Foundry Engineering. 7(1), 53-56.
  • [7] Zamani, M. (2015). Al-Si Cast Alloys - Microstructure and Mechanical properties at ambient and elevated temperature. Licentiate Thesis, Department of Materials and Manufacturing, School of Engineering, Jönköping University, Sweden.
  • [8] Yağcı, T., Cöcen, Ü. & Çulha, O. (2021). Aluminum Alloy development for wheel production by low pressure die casting with new generation computational materials engineering approaches. Archives of Foundry Engineering. 21(3), 35-46. DOI: 10.24425/afe.2021.138677.
  • [9] Sajjadi, S. A., Ezatpour, H. R. & Beygi, H. (2011). Microstructure and mechanical properties of Al–Al2O3 micro and nano composites fabricated by stir casting. Materials Science and Engineering: A. 528(29-30), 8765-8771. DOI: 10.1016/j.msea.2011.08.052.
  • [10] Weijing, L. I., Shihai, C. U. I., Jianmin, H. A. N. & Chao, X. U. (2006). Effect of silicon on the casting properties of Al-5.0% Cu alloy. Rare Metals. 25(6), 133-135. DOI: 10.1016/S1001-0521(08)60067-4.
  • [11] Caceres, C. H., Svensson, I. L. & Taylor, J. A. (2003). Strength-ductility behaviour of Al-Si-Cu-Mg casting alloys in T6 temper. International Journal of Cast Metals Research. 15(5), 531-543. DOI: 10.1080/13640461.2003.11819539.
  • [12] Liao, H., Sun, Y. & Sun, G. (2002). Correlation between mechanical properties and amount of dendritic α-Al phase in as-cast near-eutectic Al–11.6% Si alloys modified with strontium. Materials Science and Engineering: A. 335(1-2), 62-66. DOI: 10.1016/S0921-5093(01)01832-9.
  • [13] Białobrzeski, A., Pezda, J. & Ciućka, T. (2007). Choice of salts for process of continous sodium modification of Al-Si alloys. Archives of Foundry Engineering. 7(1), 31-36.
  • [14] Bogdanoff, T. (2017). Development of aluminium-silicon alloys with improved properties at elevated temperature. Licentiate Thesis, Department of Materials and Manufacturing, School of Engineering, Jönköping University, Sweden.
  • [15] Ebhota, W. S. & Jen, T. C. (2018). Intermetallics formation and their effect on mechanical properties of Al-Si-X alloys. In: Intermetallic Compounds-Formation and Applications, 21-41. DOI: 10.5772/intechopen.73188.
  • [16] Warmuzek, M. (Ed.). (2004). Aluminum-silicon casting alloys: an atlas of microfractographs. ASM International, Materials Park, Ohio, USA.
  • [17] Siddique, S. (2019). Reliability of selective laser melted AlSi12 alloy for quasistatic and fatigue applications. Springer. DOI: 10.1007/978-3-658-23425-6.
  • [18] Wang J., He S., Sun B., Li K., Shu D. & Zhou Y. (2002). Effects of melt thermal treatment on hypoeutectic Al–Si alloys. Materials Science and Engineering: A. 338(1-2), 101-107. DOI: 10.1016/S0921-5093(02)00067-9.
  • [19] Wang, R. & Lu, W. (2012). Direct electrolytic Al-Si alloys (DEASA)–An undercooled alloy self-modified structure and mechanical properties. Edited by Janis Kleperis and Vladimir Linkov. 107. DOI:10.5772/52962.
  • [20] Brodova, I.G., Popel, P.S. & Eskin, G.I. (2002). Liquid metal processing: applications to aluminium alloy production. CRC Press. DOI: 10.1201/9781482264913.
  • [21] Lipiński, T. (2008). Structure and mechanical properties of Al-12% Si alloy with fast cooling Al-12% Si. Archives of Foundry Engineering. 8(3), 51-54.
  • [22] Guo, M., Sun, M., Huang, J. & Pang, S. (2022). A comparative study on the microstructures and mechanical properties of Al-10Si-0.5 Mg Alloys prepared under different conditions. Metals, 12(1), 142. DOI:10.3390/met12010142.
  • [23] Mohamed, A. M. A. & Samuel, F. H. (2012). A review on the heat treatment of Al-Si-Cu/Mg casting alloys. Chapter: 4. In: Frank Czerwinski (Eds.), Heat Treatment - Conventional and Novel Applications. TechOpen. DOI: 10.5772/79832.
  • [24] Çolak, M. (2019). Modification of eutectic Al–Si alloys by Sr and CuSn5. Materials Research Express. 6(10), 1065a2. DOI:10.1088/2053-1591/ab3c0f.
  • [25] Ma, Z., Samuel, A. M., Doty, H. W. & Samuel, F. H. (2016). On the fractography of impact-tested samples of Al-Si alloys for automotive alloys. In Fracture Mechanics-Properties, Patterns and Behaviours. IntechOpen. DOI:10.5772/63409.
  • [26] Siemińska-Jankowska, B. & Pietrowski, S. (2003). The effects of temperature on strength of the new piston aluminum materials. Journal of KONES Internal Combustion Engines. 10(3-4), 237-250.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-55262991-b546-46ee-88a8-e64dfdd70260
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.