PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analiza występowania pierwiastków śladowych w formie mobilnej frakcji respirabilnej pyłu (PM2,5) pobranego w otoczeniu elektrowni węglowej

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Analysis of trace elements in the mobile form of respirable fraction PM2.5 collected in the surroundings of power plant
Języki publikacji
PL
Abstrakty
PL
W pracy przedstawiono wstępne wyniki badań występowania wybranych pierwiastków śladowych (As, Cd, Co, Cr, Pb, Sb i Se), należących do grupy HAPs (ang. Hazardous Air Pollutants), w formie biodostępnej frakcji respirabilnej (PM2,5). Odpowiednią frakcję pyłu pobrano w otoczeniu pracującej elektrowni węglowej opalanej węglem kamiennym. Analiza specjacyjna frakcji pyłu PM2,5 została przeprowadzona według zmodyfikowanego schematu Tessiera z wykorzystaniem ekstrakcji formy rozpuszczalnej w wodzie (Frakcja 1). Średnie stężenia pierwiastków badanych we frakcji rozpuszczalnej w wodzie utworzyły następujący szereg: Pb>Cr>As>Sb>Cd>Se>Co. Jest on zbliżony do szeregu otrzymanego w źródłach literaturowych.
EN
Research regarding environment and dust exposition conducted so far has been based on theoretical factors. These factors primarily concern the total content of heavy metals in suspended dust. However, there is a shortage of data on the specific chemical forms of trace elements. These forms condition the heavy metal threat on the environment and human health. Based on the results of chemical speciation, we can define the mobility of elements (including heavy metals) in the environment, that is, their bio-chemical activity during assimilation by organisms. The paper presents preliminary results of the occurrence of selected trace elements (As, Cd, Co, Cr, Pb, Sb and Se) that belong to the HAPs group (Hazardous Air Pollutants) in the PM2.5 water soluble form. The appropriate fraction of particulate matter was collected by Dekati PM10 Impactor in the surroundings of a working power plant that is fired with hard coal. The speciation analysis of PM2.5 fraction was conducted using a modified Tessier scheme. This procedure employs the extraction of a water soluble fraction (Fraction 1). The concentrations of elements were determined using the ICPMS technique. Measurements delivered data on the average concentration of respirable fraction PM2.5, which equaled 22.93 μg/m3. While conducting the research in the surroundings of a working power plant, a relatively high ratio of PM2.5 to TSP (83%) and to PM10 (88%) was found. Among the determined trace elements, the highest average total concentration in PM2.5 was found for Pb (82.17 ng/m3), while the lowest (less than 1 ng/m3) was found for Co. The highest average concentration in water soluble fraction F1 in PM2.5 was also found for Pb (12,97 ng/m3), while the lowest concentration (below 1 ng/m3) was found for Sb, Cd, Se and Co. The average concentrations of trace elements determined in the bioavailable fraction were found in a following order: Pb>Cr>As>Sb>Cd>Se>Co. This sequence is similar to the order received in the existing literature. In future, received data will assist in determining the forms of hazardous trace elements in total suspended particles (TSP), suspended dust (PM10) and in respirable fraction (PM2.5) in the surroundings of selected working power plants.
Rocznik
Strony
245--258
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
  • Politechnika Śląska, Wydział Inżynierii Środowiska i Energetyki, Katedra Ochrony Powietrza, ul. Konarskiego 22B, 44-100 Gliwice
autor
  • Politechnika Śląska, Wydział Inżynierii Środowiska i Energetyki, Katedra Ochrony Powietrza, ul. Konarskiego 22B, 44-100 Gliwice
Bibliografia
  • [1] Zhai Y., Xiaoting L., Hongmei C., Bibo X., Lu Z., Caiting L., Guangming Z., Source identification and potential ecological risk assessment of heavy metals in PM2.5 from Changsha, Science of the Total Environment 2014, 493, 109-115.
  • [2] Valavanidis A., Fiotakis K., Vlachogianni T., Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms, Journal of Environmental Science and Health 2008, 26, 4, 339-362.
  • [3] Massey D.D., Kulshrestha A., Taneja A., Particulate matter concentrations and their related metal toxicity in rural residential environment of semi-arid region of Indi, Atmospheric Environment 2013, 67, 278-286.
  • [4] Dos Santos M., Gómez D., Dawidowski L., Gautier E., Smichowski P., Determination of watersoluble and insoluble compounds in size classified airborne particulate matter, Microchemical Journal 2009, 91, 133-139.
  • [5] Tessier A., Campbell P.G.C., Bisson M., Sequential extraction procedure for the speciation of particulate trace metals, Analytical Chemistry 1979, 51, 7, 844-851.
  • [6] Espinosa A.J.F., Rodríguez M.T., de la Rosa F.J.B., Sánchez J.C.J., A chemical speciation of trace metals for fine urban particles, Atmospheric Environment 2002, 36, 773-780.
  • [7] Manousakas M., Papaefthymiou H., Eleftheriadis K., Katsanou K., Determination of watersoluble and insoluble elements in PM2.5 by ICP-MS, Science of the Total Environment 2014,493, 694-700.
  • [8] IARC 2012. Monographs on the Evaluation of Carcinogenic Risks to Humans: A Review of Human Carcinogens: Arsenic, Metals, Fibres, and Dusts 100C, 41-93.
  • [9] IARC 2006. Monographs on the Evaluation of Carcinogenic Risks to Humans: Metallic Cobalt Particles (With or Without Tungsten Carbide) 86, 119.
  • [10] IARC 2006. Monographs on the Evaluation of Carcinogenic Risks to Humans: Inorganic and Organic Lead Compounds 87, 529.
  • [11] U.S. EPA, 1998, Study of hazardous air pollutant emissions from electric utility steam generating units-Final Report to Congress. EPA-453/R-98-004a (February 1998) (Utility Air Toxics Study) Exec. Summ. At ES-4.
  • [12] Heal M.R., Hibbs L.R., Agius R.M., Beverland I.J., Total and water soluble trace metal content of urban background PM10, PM2.5 and black smoke in Edinburgh, UK, Atmospheric Environment 2005, 39, 1417-30.
  • [13] Konieczyński J., Zajusz-Zubek E., Distribution of selected trace elements in dust containment and flue gas desulphurisation products from coal-fired power plants, Archives of Environmental Protection 2011, 37, 2, 3-14.
  • [14] Zajusz-Zubek E., Konieczyński J., Coal cleaning versus the reduction of mercury and other trace elements emissions from coal combustion processes, Archives of Environmental Protection 2014, 40, 1, 115-127.
  • [15] Tolvanen M., Mass balance determination for trace elements at coal-, peat- and bark-fired power plants, Academic dissertation, Department of Physical Sciences Faculty of Science, University of Helsinki, Helsinki, Finland 2004.
  • [16] Degórska A., Bartnicki J., Udział Polski w atmosferycznym transporcie zanieczyszczeń powietrza na obszarze Europy, Monografia, Instytut Ochrony Środowiska - Państwowy Instytut Badawczy, 2011.
  • [17] Węgiel zabija. Analiza kosztów zdrowotnych emisji zanieczyszczeń z polskiego sektora energetycznego, GREENPEACE, czerwiec 2013 - raport http://greenpeace.pl/wegiel_zabija/ raportGP_wegiel_zabija.pdf
  • [18] Wang Y., Hopke P.K., Chalupa D.C., Utell, M.J., Effect of the shutdown of a coal-fired power plant on urban ultrafine particles and other pollutants, Aerosol Science and Technology 2011, 45, 1245-1249.
  • [19] Triantafyllou A.G., Zoras S., Evagelopoulos V., Particulate matter over a seven year period in urban and rural areas within, proximal and far from mining and power station operations in Greece, Environmental Monitoring and Assessment 2006, 122, 41-60.
  • [20] Manousakas M., Eleftheriadis K., Papaefthymiou H., Characterization of PM10 sources and ambient air concentration levels at Megalopolis City (Southern Greece) located in the vicinity of lignite-fired plants, Aerosol and Air Quality Research 2013, 13, 804-817.
  • [21] Sanchez-Rodas D., Sanchez de la Campa A., Oliveira V., de la Rosa J., Health implications of the distribution of arsenic species in airborne particulate matter, Journal of Inorganic Biochemistry 2012, 108, 112-114.
  • [22] Schleicher N.J., Norra S., Chai F., Chen Y., Wang S., Cen K., Yu Y., Stüben D., Temporal variability of trace metal mobility of urban particulate matter from Beijing - A contribution to health impact assessments of aerosols, Atmospheric Environment 2011, 45, 7248-7265.
  • [23] Rozporządzenie Ministra Środowiska z dnia 24 sierpnia 2012 r. w sprawie poziomów niektórych substancji w powietrzu DzU 2012, Nr 0, poz. 1031.
  • [24] Strickland M.J., Darrow L.A., Klein, M., Flanders W.D., Sarnat J.A., Waller L.A., Sarnat S.E., Mulholland J.A., Tolbert P.E., Short-term associations between ambient air pollutants and pediatric asthma emergency department visits, American Journal of Respiratory and Critical Care Medicine 2010, 182, 3, 307-316.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5522fce7-c85c-4fe8-bb2f-c91755189564
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.