Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Federated Conference on Computer Science and Information Systems (14 ; 01-04.09.2019 ; Leipzig, Germany)
Języki publikacji
Abstrakty
Maximum simulated likelihood estimation can be employed in empirical health economics, amongst others, to tackle issues concerning endogenous treatment effects. While theory suggests that maximum simulated likelihood estimation is asymptotically consistent, efficient and equivalent to the maximum likelihood estimator when both the number of simulation draws S and sample size N → ∞ and √N/S → 0 there is no guidance on how large of an S to choose and even theory suggests to experiment. This piece of research reviews strategies of health economists that aim at dealing with this issue. Most pieces of applied research rely on experimentation until numerical stability is achieved, while some employ Monte-Carlo techniques to justify their choice of S. A more formal test was suggested, but seemed not to be employed yet. This lack of guidance induces a research problem that needs to be properly addressed.
Rocznik
Tom
Strony
79--82
Opis fizyczny
Bibliogr. 22 poz., wz., il.
Twórcy
autor
- WIG2 Institute, Leipzig
- Leipzig University
autor
- WIG2 Institute, Leipzig
- Martin Luther University of Halle-Wittenberg
- WIG2 Institute, Leipzig
- Leipzig University
autor
- WIG2 Institute, Leipzig
Bibliografia
- 1. Barreto, Bruno & Sá, Alexandre & Ribeiro, Admilson. (2019). A Fog Computing Architecture for Security and Quality of Service. 69-73. 10.15439/2019F348. P. Deb and P. K. Trivedi. “Specification and simulated likelihood estimation of a non–normal treatmentoutcome model with selection: Application to health care utilization”. In: The Econometrics Journal 9.2 (2006), pp. 307–331. http://dx.doi.org/10.1111/j.1368-423X.2006.00187.x.
- 2. D. Shane and P. K. Trivedi. “What drives differences in health care demand? The role of health insurance and selection bias”. In: Health, Econometrics and Data Group Working Papers 12/09 (2012).
- 3. C. Gouriéroux and A. Monfort. Simulation-based econometric methods. Oxford University Press, 1997. DOI : 10.1093/0198774753.001.0001.
- 4. W. H. Greene. Econometric analysis. 6. ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2008.
- 5. A. Cameron and P. K. Trivedi. Microeconometrics using Stata. Rev. ed. A Stata Press publication. College Station, Tex.: Stata Press, 2010.
- 6. A. Cameron and P. K. Trivedi. Microeconometrics: Methods and applications. New York, NY: Cambridge University Press, 2005.
- 7. P. Deb and P. K. Trivedi. “Maximum simulated likelihood estimation of a negative binomial regression model with multinomial endogenous treatment”. In: Stata Journal 6.2 (2006), pp. 246–255.
- 8. D. M. Drukker and R. Gates. “Generating Halton sequences using Mata”. In: Stata Journal 6.2 (2006), 214–228(15).
- 9. D. M. Drukker. “Maximum simulated likelihood: Introduction to a special issue”. In: Stata Journal 6.2 (2006), 153–155(3).
- 10. K. E. Train. Discrete choice methods with simulation. Cambridge: Cambridge University Press, 2009. DOI : 10.1017/CBO9780511805271.
- 11. M. M. Garrido, P. Deb, J. F. Burgess, and J. D. Penrod. “Choosing models for health care cost analyses: issues of nonlinearity and endogeneity”. In: Health services research 47.6 (2012), pp. 2377–2397. http://dx.doi.org/10.1111/j.1475-6773.2012.01414.x.
- 12. P. Deb, C. Li, P. K. Trivedi, and D. M. Zimmer. “The effect of managed care on use of health care services: results from two contemporaneous household surveys”. In: Health economics 15.7 (2006), pp. 743–760. http://dx.doi.org/10.1002/hec.1096.
- 13. V. Atella and P. Deb. “Are primary care physicians, public and private sector specialists substitutes or complements? Evidence from a simultaneous equations model for count data”. In: Journal of health economics 27.3 (2008), pp. 770–785. DOI : 10.1016/j.jhealeco.2007.10.006.
- 14. M. Bratti and A. Miranda. “Endogenous treatment effects for count data models with endogenous participation or sample selection”. In: Health economics 20.9 (2011), pp. 1090–1109. http://dx.doi.org/10.1002/hec.1764.
- 15. A. Geraci, D. Fabbri, and C. Monfardini. “Testing exogeneity of multinomial regressors in count data models: Does two-stage residual inclusion work?” In: Journal of Econometric Methods 7.1 (2018), p. 313. http://dx.doi.org/10.1515/jem-2014-0019.
- 16. M. K. Munkin and P. K. Trivedi. “Simulated maximum likelihood estimation of multivariate mixed–Poisson regression models, with application”. In: The Econometrics Journal 2.1 (1999), pp. 29–48. http://dx.doi.org/10.1111/1368-423X.00019.
- 17. V. Atella and A. Holly. “Disentangling adverse selection, moral hazard and supply induced demand: An empirical analysis of the demand for healthcare services”. In: SSRN Electronic Journal (2016). DOI : 10.2139/ssrn.2801679.
- 18. C. R. Bhat, C. Varin, and N. Ferdous. “A comparison of the maximum simulated likelihood and composite marginal likelihood estimation approaches in the context of the multivariate ordered-response model”. In: Maximum simulated likelihood methods and applications. Ed. by R. C. Hill and W. H. Greene. Vol. 26. Advances in Econometrics. Bingley, UK: Emerald, 2010, pp. 65–106. http://dx.doi.org/10.1108/S0731-9053(2010)0000026007.
- 19. V. A. Hajivassiliou. “Some practical issues in maximum simulated likelihood”. In: Simulation-based Inference in Econometrics. Ed. by R. Mariano, T. Schuermann, and M. J. Weeks. Cambridge: Cambridge University Press, 2000, pp. 71–99.
- 20. P. Contoyannis, A. M. Jones, and N. Rice. “Simulation-based inference in dynamic panel probit models: An application to health”. In: Empirical Economics 29.1 (2004), pp. 49–77. http://dx.doi.org/10.1007/s00181-003-0189-x.
- 21. M. B. Buntin, C. H. Colla, P. Deb, N. Sood, and J. J. Escarce. “Medicare spending and outcomes after postacute care for stroke and hip fracture”. In: Medical care 48.9 (2010), pp. 776–784. http://dx.doi.org/10.1097/MLR. 0b013e3181e359df.
- 22. A. Finkelstein et al. The Oregon health insurance experiment: Evidence from the first year. Cambridge, MA, 2011. http://dx.doi.org/10.3386/w17190.
Uwagi
1. Track 4: Information Systems and Technologies
2. Technical Session: 1st Special Session on Data Science in Health
3. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5521f60b-3bca-4840-90a6-b1fcfc1416ac