PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Needle-fibre calcite and nanofibres as components of Holocene fissure-filling carbonates in southern Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article deals with the carbonates, filling fissures in limestone bedrock and presently exposed in a south-facing rock wall of Kramnica hill (Pieniny Klippen Belt, southern Poland). The carbonates are composed of (i) needle-fibre calcite crystals, (ii) carbonate nanofibres, (iii) carbonate nanoparticles, and (iv) micrite and sparite calcite crystals. Detrital grains from the carbonate bedrock occur subordinately. The spatial relationships of the components give documentation that the nanofibres were formed simultaneously with or slightly later than the needle-fibre calcite crystals. There exists a continuous chain of forms from nanoparticles to elongated nanofibres. This, in turn, indicates that all the above morphological forms are related genetically. In relatively wide fissures, the carbonates studied formed stepped microterracettes, similar to those of speleothems, mainly of moonmilk type. Conversely, narrow fissures are completely filled with carbonates, which display parallel lamination. The carbonates were formed in the late Holocene. However, “dead carbon effect” precludes the possibility of any precise dating of them. Their δ13C and δ18O values are in ranges from -5.1‰ to -3.8‰ and from -6‰ to -4.7‰, respectively. The carbonates studied bear a strong resemblance to soil and spelean, moonmilk-type carbonates. This indicates that continuity exists between the depositional environments of soil and spelean carbonate.
Rocznik
Strony
229–242
Opis fizyczny
Bibliogr. 87 poz., rys., tab., wykr.
Twórcy
  • Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, 30-063 Kraków, Poland
autor
  • Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, 30-063 Kraków, Poland
  • Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, 30-063 Kraków, Poland
Bibliografia
  • 1. Addadi, L., Raz, S. & Weiner, S., 2003. Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. Advanced Materials, 15: 959-970.
  • 2. Alonzo-Zarza, A. M., 2003. Palaeoenvironmental significance of palustrine carbonates and calcretes in geological record. Earth-Science Reviews, 60: 261-298.
  • 3. Alonso-Zarza, A. M. & Jones, B., 2007. Root calcrete formation on Quaternary karstic surfaces of Grand Cayman. Geológica Acta, 5: 77-88.
  • 4. Alonso-Zarza, A. M. & Wright, V. P., 2010. Calcretes. In: Alonso- Zarza, A. M. & Tanner, L. H. (eds), Carbonates in Continental Settings: Facies, Environments and Process. Developments in Sedimentology, 61, pp. 225-267.
  • 5. Bajnóczi, B. & Kovács-Kis, V., 2006. Origin of pedogenic needle-fiber calcite revealed by micromorphology and stable isotope compoiiiion - a case study of a Quaiernary paleosol from Hungary. Chemie der Erde, 66: 203-212.
  • 6. Baker, A., Ito, E., Smart, P. & McEwan, R., 1997. Elevated and variable values of Cin speleothems in a British cave system. Chemical Geology, 136: 263-270.
  • 7. Barta, G., 2011. Secondary carbonates in loess-paleosoil sequences: A general review. Central European Journal of Geosciences, 3: 129-146.
  • 8. Baskar, S., Baskar, R. & Routh, J., 2011. Biogenic evidences of moonmilk deposition in the Mawmluh Cave, Meghalaya, India. Geomicrobiology Journal, 28: 252-256.
  • 9. Becze-Deák, J., Langohr, R. & Verrecchia, E. P., 1997. Small scale secondary CaCO3 accumulations in selected sections of the European loess belt. Morphological forms and potential for paleoenvironmental reconstruction. Geoderma, 76: 221252.
  • 10. Bernasconi, R., 1981. Mondmilch (Moonmilk): Two questions of terminology. In: Beck, B. F. (ed.), Eighth International Congress of Speleology, Proceedings, Volume 1. National Speleological Society, Bowling Green, pp. 113-116.
  • 11. Bindschedler, S., Milliere, L., Cailleau, G., Job, D. & Verrecchia, E. P., 2010. Calcitic nannofibres in soils and caves: a putative fungal contribution to carbonatogenesis. In: Pedley, H. M. & Rogerson M. (eds), Tufas and Speleothems. Unravelling the Microbial and Physical Controls, Geological Society Special Publication, 336: 225-238.
  • 12. Bindschedler, S., Milliere, L., Cailleau, G., Job, D. & Verrecchia, E. P., 2012. An ultrastructural approach to analogies between fungal structures and needle fiber calcite. Geomicrobiology Journal, 29: 301-312.
  • 13. Birkenmajer, K., 1977. Jurassic and Cretaceous lithostratigraphic units of the Pieniny Klippen Belt (Carpathians) in Poiand. Studia Geologica Polonica, 45: 49-108.
  • 14. Birkenmajer, K., 1979. Przewodnik geologiczny po pienińskim pasie skałkowym. Wydawnictwa Geologiczne, Warszawa, 237 pp. [In Polish].
  • 15. Blyth, A. J. & Frisia, S., 2008. Molecuiar evidence for bacterial mediation of calcite formation in cold high-altitude caves. Geomicrobiology Journal, 25: 101-111.
  • 16. Bontognali, T. R. R., Vesconcelos, C., Warthmann, R. J., Dupraz, C., Bernasconi, S. M. & McKenzie, J. A., 2008. Microbes produce nanobacteria-like structures, avoiding cell entombment. Geology, 36: 663-666.
  • 17. Borsato, A., Frisia, S., Jones, B. & van der Borg, K., 2000. Calcite moonmilk: crystal morphology and environment of formation in caves in the Italian Alps. Journal of Sedimentary Research, 70: 1179-1190.
  • 18. Bronk Ramsey, C., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon, 51: 337-360.
  • 19. Cailleau, G., Braissant, O., Dupraz, C., Aragno, M., & Verrecchia, E. P., 2005. Biologically induced accumulations of CaCO3 in orthox soils of Biga, Ivory Coast. Catena, 59: 1-17.
  • 20. Cailleau, G., Dadras, M., Abolhassani-Dadras S., Braissant O. &
  • 21. Verrecchia, E. P., 2009a. Evidence for an organic origin of pedogenic calcitic nanofibres. Journal of Cryslal Growth, 311: 2490-2495.
  • 22. Cailleau, G., Verrecchia, E. P., Braissant, O. & Emmanuel, L., 2009b. The biogenic origin of needle fibre calcite. Sedimentology, 56: 1858-1875.
  • 23. Cañaveras, J. C., Cuezva, S., Sanchez-Moral, S., Lario, J., Laiz, L., Gonzalez, J. M. & Saiz-Jimenez, C., 2006. On the origin of fiber calcite crysials in moonmilk deposits. Naturwissenschaften, 93: 27-32.
  • 24. Curry, M. D., Boston, P. J., Spilde, M. N., Baichtal, J. & Campbell, A. R., 2009. Cottonballs, a unique moonmilk, and abundant subaerial moonmilk in Cataract Cave, Tongass National Forest, Alaska. International Journal of Speleology, 38: 111128.
  • 25. Duliński, M., Florkowski, T., Grabczak, J. & Różański, K., 2001. Twenty-five years of syst ematic meas urements of isot opic composition of precipitation in Poland. Przegląd Geologiczny, 49: 250-256. [In Polish, English summary].
  • 26. Dullo, W-Ch. & Tietz, G. F., 1984. Kalzitische Whisker und Dendritenkristalle als Vorstufe zur Füllung von Klüften in Kalken. Mitteilungen der Gesellschaft der Geologie-und Bergbaustudenten in Österreich, 30/31: 217-234.
  • 27. Friedman, I. & O’Neil, J. R. 1977. Compilation of stable isotope fractionation factors of geochemical interest. In: Fleischer, M. (ed.), Data of Geochemistry. US Geological Survey Professional Paper, 440-KK: 1-12.
  • 28. Gradziński, M., 2003. Bacterial influence on speleothem oxygen isotope composition: An example based on cave pisoids from Perlová Cave (Slovakia). Geologica Carpathica, 54: 199204.
  • 29. Gradziński, M., Chmiel, M. J., Lewandowska, A. & Michalska- Kasperkiewicz, B., 2010. Siliciclastic microstromatolites in a sandstone cave: Role of trapping and binding of detrital particles in formation of cave deposits. Annales Societatis Geologorum Poloniae, 80: 303-314.
  • 30. Gradziński, M., Chmiel, M. J. & Motyka, J., 2012a. Formation of calcite by chemolithoautotrophic bacteria - a new hypothesis, based on microcrystalline cave pisoids. Annales Societatis Geologorum Poloniae, 82: 361-369.
  • 31. Gradziński, M., Duliński, M., Hercman, H., Górny, A. & Przybyszowski, S., 2012b. Pecuiiar calcite speleothems filling fissures in calcareous sandstones and their palaeohydrological and palaeoclimatic significance: an example from the Polish Carpathians. Geological Quarterly, 56: 711-732.
  • 32. Gradziński, M., Hercman, H., Kicińska, D., Barczyk, G., Bella, P. & Holúbek, P., 2009. Karst in the Tatra Mountains - developments of knowledge in the last thirty years. Przegląd Geologiczny, 57: 674-684. [In Polish, English summary].
  • 33. Gradziński, M., Szulc, J. & Smyk, B., 1997. Microbial agents of moonmilk calcification. In: Jeannin, P.-Y. (ed.), Proceedings of the 12th International Congress of Speleology, Volume 1. International Union of Speleology, Basel, pp. 275-278.
  • 34. Gradziński, R. & Radomski, A., 1957. Cavern deposits of “rock milk” in the Szczelina Chochołowska Cave. Rocznik Polskiego Towarzystwa Geologicznego, 26: 63-90. [In Polish, English summary].
  • 35. Grodzińska, K., 1979. Map of plant communities in the nature reserve of “Przełom Białki pod Krempachami” (Białka River Gorge at Krempachy, Pieniny Klippen Belt). Ochrona Przyrody, 42: 29-73. [In Polish, English summary].
  • 36. Hammer, 0., Dysthe, D. C. & Jamtveit, B., 2010. Travertine terracing: patterns and mechanisms. In: Pedley, H. M. & Rogerson, M. (eds), Tufas and Speleothems: Unravelling the Microbial and Physical Controls. Geological Society Special Publications, 336: 345-355.
  • 37. Hill, C. & Forti, P., 1997. Cave Minerals of the World. National Speleological Society, Huntsville, pp. 1-463.
  • 38. Iwanoff, L. L., 1905-1906. Ein wasserhaltiges Calciumcarbonat aus den Umgebung von Nowo-Alexandria (Guv. Lublin). Annuaire Géologique et Minéralogique de la Russie, 8: 2325. [In Russian, German summary].
  • 39. James, N. P., 1972. Hoiocene and Pleistocene calcareous crust (caliche) profiles: Criteria for subaerial exposure. Journal of Sedimentary Petrology, 42: 817-836.
  • 40. Jones, B., 2009. Cave pearls - the integrated product of abiotic and biotic processes. Journal of Sedimentary Research, 79: 689710.
  • 41. Jones, B., 2010. Microbes in caves: agents of calcite corrosion and preciptiation. In: Pedley, H. M. & Rogerson, M. (eds), Tufas and Speleothems: Unravelling the Microbial and Physical Controls. Geological Society Special Publications, 336: 7- 30.
  • 42. Jones, B. & Kahle, Ch., 1993. Morphology, relationship, and origin of fiber and dendrite calcite crystals. Journal of Sedimentary Petrology, 63: 1018-1031.
  • 43. Jones, B. & Ng, K.-C., 1988. The structijre and diagenesis of rhizoliths from Cayman Brac, British West Indies. Journal of Sedimentary Petrology, 58: 457-467.
  • 44. Jones, B. & Peng, X., 2012. Amorphous calcium carbonate associated with biofilms in hot spring deposits. Sedimentary Geology, 269-270: 58-68.
  • 45. Julia, R., 1983. Travertines. In: Scholle, P. A., Bebout, D. G. & Moore, C. H. (eds), Carbonate Depositional Environments. American Association of Petroleum Geologists Memoire, 33: 64-72.
  • 46. Kabanov, P. B., Alekseeva, T. V., Alekseeva, V. A., Alekseev, A. O. & Gubin, S. V., 2010. Paleosols in Late Moscovian (Carboniferous) marine carbonates of the East European Craton revealing ‘great calcimagnesian plain’ paleolandscapes. Journal of Sedimentary Research, 80: 195-215.
  • 47. Kostrakiewicz, L., 1982. Klimat. In: Zarzycki, K. (ed.), Przyroda Pienin w obliczu zmian. Państwowe Wydawnictwo Naukowe, Warszawa, pp. 53-69. [In Polish].
  • 48. Kowalinski, S., Pons, J. L. & Slager, S., 1972. Micromorphological comparison of three soils derived from loess in different climatic regions. Geoderma, 7: 141-158.
  • 49. Krąpiec, M. & Walanus, A., 2011. Application of the triple-photomultiplier liquid spectrometer Hidex 300SL in radiocarbon dating. Radiocarbon, 53: 543-550.
  • 50. Lacelle, D., Pellerin, A., Clark, J. D., Lauriol, B. & Fortin, D., 2009. (Micro)morphological, inorganic-organic isotope geochemistry and microbial populations in endostromatolites (cf. fissure calcretes), Haughton impact structirre, Devon Island, Canada: The influence of geochemical pathways on the preservation of isotope biomarkers. Earth and Planetary Science Letters, 281: 202-214.
  • 51. Lauriol, B. & Clark, I., 1999. Fissure calcretes in the arctic: A paleohydrologic indicator. Applied Geochemistry, 14: 775-785.
  • 52. Loisy, C., Verrecchia, E. P. & Dufour, P., 1999. Microbial origin for pedogenic micrite associated with carbonate paleosol (Champagne, France). Sedimentary Geology, 126: 193-204.
  • 53. Łącka, B., Łanczont, M. & Madeyska, T., 2009. Oxygen and carbon stable isotope composition of authigenic carbonates in loess sequences from the Carpathian margin and Podolia, as a palaeoclimatic record. Quaternary International, 198: 136151.
  • 54. Milliere, L., Hasinger, O., Bindschedler, S., Cailleau, G., Spangenberg, J. E., Verrecchia, E. P., 2011a. Stable carbon and oxygen isotope signatijres of pedogenic needle fibre calcite. Geoderma, 161: 74-87.
  • 55. Milliere, L., Spangenberg, J. E., Bindschedler, S., Cailleau, G. & Verrecchia, E. P., 2011b. Reliability of stable carbon and oxygen isotope compositions of pedogenic needle fibre calcite as environmental indicators: examples from Western Europe. Isotopes in Environmental and Health Studies, 47: 341-358.
  • 56. Morozewicz, J., 1907. Przyczynki do znajomości węglanu wapniowego. I. O lublinicie nowej odmianie spatu wapniowego. Kosmos, 32: 487-492. [In Polish].
  • 57. Morozewicz, J., 1911. Ueber Lublinit, eine neue Vartietät des Kalkspates (Berichtigung.). Centralblatt für Minerologie, Geologie und Paläontologie, 1911: 229-231.
  • 58. Northup, D. E. & Lavoie, K. H., 2001. Geomicrobiology of caves: A review. Geomicrobiology Journal, 18: 199-222.
  • 59. O’Neil, J. R., Clayton, R. N. & Mayeda, T. K. 1969. Oxygen isotope fractionation in divalent metal carbonates. Journal of Chemical Physics, 51: 5547-5558.
  • 60. Olszta, M. J., Gajjeraman, S., Kaufman, M. & Gower, L. B., 2004. Nanofibrous calcite synthesized via a solution-precursorsolid mechanism. Chemistry of Materials, 16: 2355-2362.
  • 61. Onac, B. P., 1995. Minealogical data concerning moonmilk speleothems in few caves from northern Norway. Acta Carsologica, 24: 429-437.
  • 62. Owliaie, H. R., 2013. Micromorphology of pedogenic carbonate features in soils of Kohgilouye, southwestern Iran. Journal of Agricultural Science and Technology, 14: 225-239.
  • 63. Pazdur, A., Pazdur, M. F. & Szulc, J., 1988. Radiocarbon dating of Holocene calcareous tufa in southern Poland. Radiocarbon, 30, 133-152.
  • 64. Pentecost, A., 2005. Travertine. Springer, Berlin, 445 pp.
  • 65. Phillips, S. E. & Self, P. G., 1987. Morphology, crysiallography and origin of needle-fibre calcite in Quaternary pedogenic calcretes of South Austiaiia. AusIralian Journal of Soil Research, 25: 429-444.
  • 66. Rajchel, L., Zuber, A., Duliński, M. & Rajchel. J., 2005. Isotope and chemical composition and water ages of sulphide springs in the Polish Carpathians. Współczesne Problemy Hydrogeologii, 12: 583-588. [In Polish, English summary].
  • 67. Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidison, H., Hajdas, I., Hatté, C., Heaton, T., Hoffmann, D. L., Hogg, A., Hughen, K. A., Kaiser, K., Kromer, B., Manning, S. W., Niu, M., Reimer, R., Richards, D.,A., Scott, E. M., Southon. J. R., Staff, R. A., Turney, C. & Plicht, J., 2013. IntCal13 AND Marine13 radiocarbon age calibration curves 050,000 years cal BP. Radiocarbon, 55: 1869-1887.
  • 68. Richter, D. K., Immenhauser, A. & Neuser, R. D., 2008. Electron backscatter diffraction documents randomly oriented c-axes in moonmilk calcite fibres: evidence for biologically induced precipitation. Sedimentology, 55: 487-497.
  • 69. Rodriguez-Blanco, J. D., Shaw, S. & Benning, L. G., 2011. The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite. Nanoscale, 3: 265-271.
  • 70. Rossinsky, V, Jr., Wanless, H. R. & Swart, P. K., 1992. Penetrative calcretes and their stratigraphic implications. Geology, 20: 331-334.
  • 71. Rozanski, K. & Dulinski, M., 1988. A reconnais i ance isotope study of waters in the karst of the Western Tatra Mountains. Catena, 15: 289-301.
  • 72. Sherman, C. E., Fletcher, C. H. & Rubin, K. H., 1999. Marine and meteoric diagenesis of Pleistocene carbonates from a near- shore submarine terrace, Oahu, Hawaii. Journal of Sedimentary Research, 69: 1083-1097.
  • 73. Stoops, G. J., 1976. On the naiure of “lublinite” from Hollanta (Turkey). American Mineralogist, 61: 172.
  • 74. Strong, G. E., Giles, J. R. A. & Wright, V. P., 1992. A Holocene calcrete from North Yorkshire, England: implications for interpreting palaeoclimates using calcretes. Sedimentology, 39: 333-347.
  • 75. Supko, P. R., 1973. “Whisker” crystal cement in a Bahamian rock. In; Bricker, O.P. (ed.), Carbonate Cements. John Hopkins University Studies in Geology, 19: 143-146.
  • 76. Szulc, J. & Smyk, B., 1994. Bacterially controlled calcification of freshwater Schizotrix-stromatolites: an example from the Pieniny Mts., Southern Poland. In: Bertrand-Sarfati, J. & Monty, C. (eds), Phanerozoic Stromatolites II. Kluwer, Dordrecht, pp. 31-51.
  • 77. Thugutt, S, J., 1929. Sur la naiure de la lublinite et sa solubilité dans l’eau distillée. Archiwum Mineralogiczne, 5: 97-104. [In Polish, French summary].
  • 78. Verrecchia, E. P., 1990. Lithodiagenetic implications of the calcium oxaiate-carbonate biogeochemical cycle in semi arid calcretes, Nazareth, Israel. Geomicrobiology Journal, 8: 89101.
  • 79. Verrecchia, E. P. & Verrecchia, K. E., 1994. Needle-fiber calcite: A critical review and a proposed classification. Journal of Sedimentary Research, A64: 650-664.
  • 80. Ward, W. C., 1973. Influence of climate on the early diagenesis of carbonate eolianites. Geology, 1: 171-174.
  • 81. Wright, V. P., 1984. The significance of needle-fibre calcite in Lower Carboniferous palaeosol. Geological Journal, 19: 831-838.
  • 82. Wright, V. P., 1986. The role of fungal biomineralization in the formation of early Carboniferous soil fabrics. Sedimentology, 33: 831-838.
  • 83. Wright, V. P., 2007. Calcrete. In: Nash, D. J. & McLaren, S. J. (eds), Geochemical Sediments and Landscapes. Blackwell, Malden, pp. 10-45.
  • 84. Wright, V. P., Platt, N. H., Mariott, S. B. & Beck, V. H., 1995. A classification of rhizogenic (root-formed) calcretes, with examples from the Upper Jurassic-Lower Cretaceous of Spain and Upper Cretaceous of southern France. Sedimentary Geology, 110: 143-158.
  • 85. Xu, X., Han, J. T. & Cho, K., 2005. Deposition of amorphous calcium carbonite hemipheres on subitrates. Langmuir, 21: 4801-4804.
  • 86. Xu, X.-R., Cai, A.-H., Liu, R., Pan, H.-H., Tang, R.-K. & Cho, K., 2008. The roles of waier and polyelectrolytes in the chase transformation of amorphous calcium carbonate. Journal of Crystal Growth, 310: 3779-3787.
  • 87. Zhou, J. & Chafetz, H. S., 2009. Biogenic caliches in Texas: The role of organisms and effect of climate. Sedimentary Geology. 222: 207-225.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-55204896-e4a7-4ffe-819a-f0a07b1f177b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.