PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improving Segmentation of 3D Retina Layers Based on Graph Theory Approach for Low Quality OCT Images

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents signal processing aspects for automatic segmentation of retinal layers of the human eye. The paper draws attention to the problems that occur during the computer image processing of images obtained with the use of the Spectral Domain Optical Coherence Tomography (SD OCT). Accuracy of the retinal layer segmentation for a set of typical 3D scans with a rather low quality was shown. Some possible ways to improve quality of the final results are pointed out. The experimental studies were performed using the so-called B-scans obtained with the OCT Copernicus HR device.
Rocznik
Strony
269--280
Opis fizyczny
Bibliogr. 21 poz.., rys., tab., wykr., wzory
Twórcy
  • Poznan University of Technology, Department of Computing, Piotrowo 3a, 60-965 Poznań, Poland
autor
  • Poznan University of Technology, Department of Computing, Piotrowo 3a, 60-965 Poznań, Poland
  • Poznan University of Technology, Department of Computing, Piotrowo 3a, 60-965 Poznań, Poland
autor
  • Poznan University of Medical Sciences, Department of Optometry and Biology of Visual System, Rokietnicka 5D, 60-806 Poznań, Poland
  • Poznan University of Medical Sciences, Clinical Eye Unit and Pediatric Ophthalmology Service Heliodor Swiecicki University Hospital, Grunwaldzka 16/18, 60-780 Poznań, Poland
autor
  • Poznan University of Medical Sciences, Department of Optometry and Biology of Visual System, Rokietnicka 5D, 60-806 Poznań, Poland
  • Poznan University of Medical Sciences, Clinical Eye Unit and Pediatric Ophthalmology Service Heliodor Swiecicki University Hospital, Grunwaldzka 16/18, 60-780 Poznań, Poland
autor
  • Poznan University of Medical Sciences, Clinical Eye Unit and Pediatric Ophthalmology Service Heliodor Swiecicki University Hospital, Grunwaldzka 16/18, 60-780 Poznań, Poland
Bibliografia
  • [1] Rogalski, A., Chrzanowski, K. (2014). Infrared Devices And Techniques (Revision). Metrol. Meas. Syst., 21(4), 565-618.
  • [2] Antoniuk, P., Strąkowski, M.R., Pluciński, J., Kosmowski, B.B. (2012). Non-Destructive Inspection Of Anti- Corrosion Protective Coatings Using Optical Coherent Tomography. Metrol. Meas. Syst., 19(2), 365‒372.
  • [3] Yaqoob, Z., Wu, J., Yang, C. (2005). Spectral domain optical coherence tomography: a better OCT imaging strategy. Biotechniques, 39 (6 Suppl), 6‒13, DOI: 10.2144/000112090.
  • [4] SOCT Copernicus HR. (2011). User Manual Software Version 4.3.0 User Manual rev. A. Optopol.
  • [5] RTVue XR 100 Avanti Edition (2014). Podręcznik użytkownika. Optovue Inc.
  • [6] Fabritius, T., Makita, S., et al. (2009). Automated segmentation of the macula by optical coherence tomography. Opt. Express, 17(18), 15659-15669.
  • [7] Yazdanpanah, A., Hamarneh, G., Smith, B., Sarunic, M. (2009). Intra-retinal Layer Segmentation in Optical Coherence Tomography Using an Active Contour Approach. Proc. of the 12th International Conference on Medical Image Computing and Computer-Assisted Intervention: Part II, Springer-Verlag, 5762, 649-656.
  • [8] Kajic, V., Povazay, B., Hermann, B., Hofer, B., Marshall, D., Rosin, P.L., Drexler, W. (2010). Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis. Optics Express, 18(14), 14730-14744.
  • [9] Garvin, M.K., Abramoff, M.D., Kardon, R., Russell, S.R., Wu, X., Sonka, M. (2008). Intraretinal Layer Segmentation of Macular Optical Coherence Tomography Images Using Optimal 3-D Graph Search. IEEE Transactions on Medical Imaging, 27(10), 1495-1505.
  • [10] Chiu, S.J., Li, X.T., Nicholas, P., Toth, C.A., Izatt, J.A., Farsiu, S. (2010). Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation. Opt. Express, 18(18), 19413-19428.
  • [11] Teng, P. (2013). Caserel ‒ An Open Source Software for Computer-aided Segmentation of Retinal Layers in Optical Coherence Tomography Images. Zenodo, DOI: 10.5281/zenodo.17893.
  • [12] Cha, Y.M., Han, J.H. (2014). High-Accuracy Retinal Layer Segmentation for Optical Coherence Tomography Using Tracking Kernels Based on Gaussian Mixture Model. IEEE Journal of Selected Topics in Quantum Electronics, 20(2).
  • [13] Szkulmowski, M., Wojtkowski, M., Sikorski, B., Bajraszewski, T., Srinivasan, V.J., Szkulmowska, A., Kaluzny, J.J., Fujimoto, J.G., Kowalczyk, A. (2007). Analysis of posterior retinal layers in spectral optical coherence tomography images of the normal retina and retinal pathologies. Journal of Biomedical Optics, 12(4).
  • [14] Szkulmowski, M., Wojtkowski, M. (2013). Averaging techniques for OCT imaging. OPTICS EXPRESS, 21(8), 9757‒9773.
  • [15] Ishikawa, H., Stein, D.M., et al. (2005). Macular segmentation with optical coherence tomography. Invest. Ophthalmol. Vis. Sci., 46(6), 2012-2017.
  • [16] Ehnes, A., Wenner, Y., Friedburg, C., Preising, M.N., Bowl, W., Sekundo, W., Meyer zu Bexten, E., Stieger, K., Lorenz, B. (2014). Optical Coherence Tomography (OCT) Device Independent Intraretinal Layer Segmentation. Trans. Vis. Sci. Tech., 3(1).
  • [17] Fernandez, D.C., et al. (2005). Automated detection of retinal layer structures on optical coherence tomography images. Opt. Express, 13(25), 10200-10216.
  • [18] Stein, D. M., et al. (2015). A New Quality Assessment Parameter for Optical Coherence Tomography. The British Journal of Ophthalmology, 90.2, 186-190.
  • [19] Dijkstra, E.W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1), 269-271.
  • [20] Shi, J., Malik, J. (2000). Normalized Cuts and Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 22(8), 888-905.
  • [21] Stankiewicz, A., Marciniak, T., Dąbrowski, A., Stopa, M., Marciniak, E. (2014). A New OCT-based Method to Generate Virtual Maps of Vitreomacular Interface Pathologies. Proc. of SPA 2014: Signal Processing Algorithms, Architectures, Arrangements, and Applications Conference, 83‒88.
Uwagi
EN
This work was prepared within the PRELUDIUM CADOCT-Project (2014/15/N/ST6/ 00710) founded by National Science Centre Poland.
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-551b9f3e-6602-4005-8f3b-1535e9ddfaa6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.