Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Under operating conditions, gas turbine blades may experience overheating. The degree of unfavourable modifications of the condition of both the protective insulating coating and the alloy (microstructure degradation) depends, among other factors, on the temperature and its exposure time. In this study, under laboratory conditions, in the presence of aviation kerosene exhaust gases, the influence of temperature (mainly outside the range of nominal operating temperatures) on the condition of uncooled polycrystalline rotor blades of aircraft turbine jet engines was examined. The object of the research were new gas turbine blades of the SO-3 aircraft engine made of the EI-867 WD alloy, which were exposed to high temperatures for a period of two hours in a laboratory furnace in the temperature range T = 1123 - 1523K, every 100K. The article determines the nature of changes (modifications) both in the state of the coatings and in the core material (alloy). A multifactor analysis was taken into account, including in the case of coatings modifications: morphological microstructure of the coating, chemical composition of oxides and roughness parameters, and in the case of the alloy mainly grain growth, and modification of the strengthening γ' phase. As a result of exposure to high temperatures in the surroundings of exhaust gases, the roughness of the surface changes and various types of oxides are formed, and its thickness increases. An increasing number of carbides appeared in the EI-867 WD alloy and grain growth was found as a function of the heating temperature. In particular, the blade alloy structure experienced the growth of the reinforcing γ’ phase, which is adverse in terms of heat resistance, and the percentage-wise depletion of this phase in the alloy structure. Due to the aforementioned changes, heated blades experiences significant reduction in heat resistance and high-temperature creep resistance. The article also indicates the possibility of using the characteristics of microstructural changes to determine the technical condition of the tested turbine element in a non-destructive way.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
153--163
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Mechanical Engineering, Bialystok Technical University, 45 Wiejska Street, 15-333 Białystok, Poland
autor
- Air Force Institute of Technology, 6 Księcia Bolesława Street, 01-494 Warsaw, Poland
autor
- Faculty of Advanced Technologies and Chemistry, Military University of Technology, 2 Kaliskiego Street, 00-908 Warszawa, Poland
Bibliografia
- 1. Pollock TM, Tin S. Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure, and properties. J. Propuls. Power. 2006; 22: 361–374.
- 2. Gudivada G, Pandey AK. Recent developments in nickel-based superalloys for gas turbine applications: review. J Alloy Compd. 2023;963.
- 3. Sims CT, Stoloff NS, Hagel WC. Superalloys II-High-Temperature Materials for Aerospace and Industrial Applications. New York (NY): John Wiley & Sons; 1987.
- 4. DeMasi-Marcin JT, Gupta DK. Protective coatings in the gas turbine engine. Surf Coat Technol. 1994;68:1–9.
- 5. Kadir A, Bég O, Gendy EIM, Bég TAB, Shamshuddin MD. Computational fluid dynamic and thermal stress analysis of coatings for high‐temperature corrosion protection of aerospace gas turbine blades. Heat Transf Asian Res. 2019;48. doi:10.1002/htj.21493
- 6. Singh I, Tiwari AC. A revisit to different techniques for gas turbine blade cooling. Mater Today Proc. 2023.
- 7. Chowdhury TS, Mohsin FT, Tonni MM, Mita MNH, Ehsan MM. A critical review on gas turbine cooling performance and failure analysis of turbine blades. Int J Thermofluids. 2023;18:100329.
- 8. Hetmańczyk M, Swadźba L, Mendala B. Advanced materials and protective coatings in aero-engines application. JAMME. 2007;24:372–81.
- 9. Grimme C, Oskay C, Mengis L, Galetz MC. High temperature wear behavior of δ-Ni₂Al₃ and β-NiAl coatings formed on pure nickel using pack cementation process and diffusion heat treatment. Wear. 2021;477:203850.
- 10. Han J, Dutta S, Ekkad S. Gas Turbine Heat Transfer and Cooling Technology. New York (NY): Taylor and Francis; 2012.
- 11. Rajendran R. Gas turbine coatings—An overview. Eng Fail Anal. 2012;26:355–69.
- 12. Darolia R. Development of strong, oxidation and corrosion resistant nickel-based superalloys: critical review of challenges, progress and prospects. Int Mater Rev. 2018;64:355–80.
- 13. Azevedo C, Sinatora A. Erosion-fatigue of steam turbine blades. Eng Fail Anal. 2009;16:2290–303.
- 14. Laguna-Camacho JR, Villagran Y, Martínez-García H, Juárez-Morales G, Cruz-Orduña MI, Manuel VT, et al. A study of the wear damage on gas turbine blades. Eng Fail Anal. 2015;61:88–99.
- 15. Dubiel B, Moskalewicz T, Swadźba L, Czyrska-Filemonowicz A. Analytical TEM and SEM characterisation of aluminide coatings on nickel based superalloy CMSX-4. Surf Eng. 2008;24:327–31.
- 16. Carter TJ. Common failures in gas turbine blades. Eng Fail Anal. 2005;12:237–47.
- 17. Kopec M. Recent advances in the deposition of aluminide coatings on nickel-based superalloys: a synthetic review (2019–2023). Coatings. 2024;14:630. doi:10.3390/coatings14050630
- 18. Qu S, Fu CM, Dong C, Tian JF, Zhang ZF. Failure analysis of the 1st stage blades in gas turbine engine. Eng Fail Anal. 2013;32:292–303.
- 19. Kolagar AM, Tabrizi N, Cheraghzadeh M, Shahriari MS. Failure analysis of gas turbine first stage blade made of nickel-based superalloy. Case Stud Eng Fail Anal. 2017;8:61–8.
- 20. Belan J, Vaško A, Tillová E. Microstructural analysis of DV–2 Ni–base superalloy turbine blade after high temperature damage. Procedia Eng. 2017;177:482–7.
- 21. García-Martínez M, Del Hoyo Gordillo JC, Valles González MP, Pastor Muro A, González Caballero B. Failure study of an aircraft engine high pressure turbine (HPT) first stage blade. Eng Fail Anal. 2023;149:107251. doi:10.1016/j.engfailanal.2023.107251
- 22. Bogdan M, Błachnio J, Spychała J, Zasada D. Assessment of usability of the exploited gas turbine blade heat resistant coatings. Eng Fail Anal. 2019;105:337–46. doi:10.1016/j.engfailanal.2019.07.016
- 23. Villada JA, Bayro-Lazcano RG, Martinez-Franco E, Espinosa-Arbelaez DG, Gonzalez-Hernandez J, Alvarado-Orozco JM. Relationship between γ′ phase degradation and in-service GTD-111 first-stage blade local temperature. J Mater Eng Perform. 2019;28:1950–7.
- 24. Zhu J, An C, Lu Y, Zhu M, Xuan F. Research progress on effect of γ' phase on strength, fatigue and creep properties of nickel-based superalloys. Mater Mech Eng. 2023;7(6):1–7. doi:10.11973/jxgccl202306001
- 25. Ponańska A. Żywotność łopatek silników lotniczych ze stopu EI-867 w aspekcie odkształcenia niejednorodnego i zmian strukturalnych [doctoral dissertation]. Rzeszów: Rzeszów University of Technology; 2000.
- 26. Xiaotong G, Weiwei Z, Chengbo X, Longfei L, Stoichko A, Yunrong Z, Qiang F. Evaluation of microstructural degradation in a failed gas turbine blade due to overheating. Eng Fail Anal. 2019;103:308–18.
- 27. Skočovský P, Podrábský T, Belan J. Degradacja w wyniku eksploatacji warstwy aluminiowo-krzemowej łopatek turbinowych wykonanych na bazie Ni. Archiwum Technologii Maszyn i Automatyzacji. 2004;24(1):45–52.
- 28. Mevissen F, Meo M. A review of NDT/structural health monitoring techniques for hot gas components in gas turbines. Sensors. 2019;19:711.
- 29. Kukla D, Kopec M, Sitek R, Olejnik A, Kachel S, Kiszkowiak Ł. A novel method for high temperature fatigue testing of nickel superalloy turbine blades with additional NDT diagnostics. Materials. 2021;14:1392. doi:10.3390/ma14061392
- 30. Bogdan M, Derlatka M, Błachnio J. Concept of computer-aided assessment of the technical condition of operated gas turbine vanes. Pol Marit Res. 2018;3(99):104–12. doi:10.2478/pomr-2018-0101
- 31. Bogdan M, Błachnio J, Kułaszka A, Zasada D. Investigation of the relationship between degradation of the coating of gas turbine blades and its surface colour. Materials. 2021;14:2478. doi:10.3390/ma14247843
- 32. Bogdan M, Błachnio J, Kułaszka A, Derlatka M. Assessing the condition of gas turbine rotor blades with the optoelectronic and thermographic methods. Metals. 2019;9:31.
- 33. Bogdan M, Zieliński W, Płociński T, Kurzydłowski KJ. Electron microscopy characterization of the high temperature degradation of the aluminide layer on turbine blades made of a nickel superalloy. Materials (Basel). 2020;13:3240. doi:10.3390/ma13143240
- 34. Paton B. Żaroprocznost litiejnych nikieliewych spławow i zaszczuta ich ot okislienija. Kijew: Naukowa Dumka; 1997.
- 35. Swadźba L. Kształtowanie struktury oraz właściwości powłok ochronnych na wybranych stopach stosowanych w lotniczych silnikach turbinowych. Katowice: Wydawnictwo Politechniki Śląskiej; 2007.
- 36. Nikitin WI. Korrozija i zaszczita łopatok gazowych turbin. Leningrad; 1987.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5519b030-b920-4c57-b877-c894621d752e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.