PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical procedures and their practical application in PV module analyses. Part IV: atmospheric transparency parameters - application

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The presented article relates to aspects of PV module testing using natural sunlight in outdoor conditions. It is a continuation of the article Part III: parameters of atmospheric transparency - determining and correlations. This article discusses the practical application of the indexes: atmosphere purity - kTm, diffused component content - ks/o, beam clear sky index - Kb - in testing various modules in outdoor conditions. Their influence on the conversion of modules made from various absorbers and various technologies is demonstrated. Their practical application in module testing in outdoor conditions is described and it - has been demonstrated that the results of the analyses carried out using the indexes conform to the results obtained using spectral parameters of solar radiation (i.e. APE and UF). These are the measurements that require the use of very expensive equipment.
Rocznik
Strony
9--39
Opis fizyczny
Bibliogr. 28 poz., rys., wykr., tab.
Twórcy
  • Institute of Environmental Engineering and Biotechnology, University of Opole, ul. kard. B. Kominka 6a, 45-032 Opole, Poland, phone +48 77 401 60 42, fax +48 77 401 60 50
  • Institute of Environmental Engineering and Biotechnology, University of Opole, ul. kard. B. Kominka 6a, 45-032 Opole, Poland, phone +48 77 401 60 42, fax +48 77 401 60 50
  • Institute of Environmental Engineering and Biotechnology, University of Opole, ul. kard. B. Kominka 6a, 45-032 Opole, Poland, phone +48 77 401 60 42, fax +48 77 401 60 50
Bibliografia
  • [1] Rodziewicz T, Teneta J, Zaremba A, Wacławek M. Analysis of solar energy resources in southern Poland for photovoltaic applications. Ecol Chem Eng S. 2013;20:177-98. DOI: 10.2478/eces-2013-0014.
  • [2] Chojnacki JA, Teneta J, Więckowski Ł. Development of PV systems and research studies on photovoltaic at the AGH University of Science and Technology in Krakow. Proc. 22nd EC PV Solar Energy Conference. Krakow: 2007;3049-52. https://www.eupvsec-proceedings.com/.
  • [3] Zdanowicz T, Prorok M, Kolodenny W, Roguszczak H. Outdoor data acquisition system with advanced database for PV modules characterization. 3rd WCPEC. Osaka: 2003. http://www.pvsc-proceedings.org/.
  • [4] Zdanowicz T, Roguszczak H. Automated outdoor data acquisition system for prolonged testing of PV modules. Proc 13th EC PV Solar Energy Conference. Nice: 1995;2322-5. https://www.eupvsec-proceedings.com/.
  • [5] Rodziewicz T. Rajfur M. Numerical procedures and their practical application in PV modules analyses. Part I: Air mass. Opto-Electron Rev. 2019;27:39-57. DOI: 10.1016/j.opelre.2019.02.002.
  • [6] Rodziewicz T., Rajfur M. Numerical procedures and their practical application in PV modules’ analyses. Part II: Useful fractions and APE. Opto-Electron Rev. 2019;27:149-60. DOI: 10.1016/j.opelre.2019.05.004.
  • [7] Rodziewicz T, Rajfur M. Numerical procedures and their practical application in PV module analyses. Part III: parameters of atmospheric transparency - determining and correlations. Opto-Electron Rev. 2020;28(1):15-34. DOI: 10.24425/opelre.2020.132499.
  • [8] IEC 60891, Procedures for temperature and irradiance corrections to measured I-V characteristics of cFigtalline silicon photovoltaic devices. IEC norm No. 60891 2nd edition. 2009-12. https://www.iec.ch/search/?q=[17]IEC%2060891.
  • [9] Blaesser G. PV System Measurements and Monitoring: The European Experience. 13-15 Nov. Proc. 9th Intern. PV Sci Eng Conf. Miyazaki (Japan):1996);157-60. http://www.pvsc-proceedings.org.
  • [10] Blaesser G. PV Array Data Translation Procedure. Proc. 13th EC PVSEC. Nice: 1995;1520-3. https://www.eupvsec-proceedings.com/.
  • [11] Corrs S, Böhm M. Validation and comparison of curve correction procedures for silicon solar cells. Proc 14th EC PVSEC. Balcerona: 1997;220-3. https://www.eupvsec-proceedings.com/.
  • [12] Marion B, Rummel S, Anderber A. Current-voltage translation by bilinear interpolation, Prog Photovolt Res Appl. 2004;12:593-607. DOI: 10.1002/pip.551.
  • [13] Piliougine M, Elizondo D, Mora López L, Sidrach-de-Cardona M. Modelling photovoltaic modules with neural networks using angle of incidence and clearness index. Prog Photovol Res Applicat. 2015;23(4):513-23. DOI: 10.1002/pip.2449.
  • [14] Lai ChS, Li X, Lai LL, Mcculloch MD. Daily clearness index profiles and weather conditions studies for photovoltaic systems. Energy Procedia. 2017;142:77-82. DOI: 10.1016/j.egypro.2017.12.013.
  • [15] Coppolino S. A new correlation between clearness index and relative sunshine. Renew Energy. 1994;4(4):417. DOI: 10.1016/0960-1481(94)90049-3.
  • [16] Nemes C, Ciobanu R, Rugina C. Probabilistic analysis of Sky clearness index for solar energy systems planning. Proc. Smart Cities Symposium Prague. 2018;24-5. DOI: 10.1109/SCSP.2018.8402677.
  • [17] Petrović I, Vražić M. Approach to advanced clearness index modelling. Int Energy Conf (ENERGYCON). Cavtat, Croatia; 2014. DOI: 10.1109/ENERGYCON.2014.6850538.
  • [18] Nunnari G. Forecasting the Class of Daily Clearness Index for PV Applications. 15th Int Conf Informatics in Control, Automat Robotics. 2018;2:172-9. DOI: 10.5220/0006860801820189.
  • [19] Nakada Y, Takahashi H, Ichida K, Minemoto T. Influence of clearness index and air mass on sunlight and outdoor performance of photovoltaic modules. Current Appl Phys. 2010;10(2):261-4. DOI: 10.1016/j.cap.2009.11.026.
  • [20] Takei R, Minemoto T, Yoshida S, Takakura H. Output energy estimation of Si-based photovoltaic modules using clearness index and air mass. Japan J Appl Phys. 2012;51:1-10. DOI: 10.1143/JJAP.51.10NF10.
  • [21] Vasar C, Prostean G, Szeidert I. An analysis of diffuse solar radiation. 2016 IEEE 20th Jubilee Int Conf Intelligent Eng Systems (INES). Budapest; 2016. DOI: 10.1109/INES.2016.7555112.
  • [22] Ragot Ph, Desmettre D, Paes P, Royer D. Outdoor Testing of Photovoltaic Modules and Arrays, Seventh E.C. Photovoltaic Solar Energy Conf: Sevilla, Spain: 1986;279-86. DOI: 10.1007/978-94-009-3817-5_52.
  • [23] Kinsey GS. PV Module Performance Testing and Standards: From Fundamentals to Applications. In: Photovoltaic Solar Energy. Chichester, West Sussex. United Kingdom: John Wiley Sons; 2017:362-9. DOI: 10.1002/9781118927496.ch33.
  • [24] Halambalakis G. Long-term outdoor testing of polycrystalline silicon and micromorph silicon thin-film tandem technology modules in Greece. Proc. 28th EUPVSEC. Paris: 2013. https://www.eupvsec-proceedings.com/.
  • [25] Erusiafe N, Chendo M, Obot N. Estimating Diffuse Solar Radiation from Global Solar Radiation. Proc EuroSun 2014. Aix-les-Bains, France; 2014. DOI: 10.18086/eurosun.2014.08.05.
  • [26] Iqbal M. Estimation of the average diffuse component of the total solar radiation, Sun: Mankind's Future Source of Energy. Proc Int Solar Energy Society Congress. New Delhi, India; 1978:389-91. DOI: 10.1016/B978-1-4832-8407-1.50077-5.
  • [27] Boland JW, Huang J, Ridley B. Decomposing global solar radiation into its direct and diffuse components. Renew Sustainable Energy Rev. 2013;28:749-56. DOI: 10.1016/j.rser.2013.08.023.
  • [28] Lam JC, Li DHW. Correlation between global solar radiation and its direct and diffuse components. Build Environ. 1996;31(6):527-35. DOI: 10.1016/0360-1323(96)00026-1.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-55188adf-cbdd-4206-9f16-57765625de1a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.