Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The use of hydrophilic polymer membranes derived from nanocomposites for the treatment of industrial wastewaters has garnered significant attention lately. When producing membranes, the fouling problems of these membranes may be lessened by adding hydrophilic additives to the polymer solution. In order to create the membranes by the phase inversion approach, 0.8 weight percent of polyethersulfone (PES) solution was mixed with a combination (1:1) of graphene oxide:titanium dioxide nanoparticles (GO:TiO2 NPs) at various weight percentages (0.2, 0.4, 0.6, and 0). The absence of spectral peaks at 899 and 1669 cm-1 in the completed membranes, as determined by FTIR studies, suggests that the GO:TiO2 NPs component’s hydrolytic breakdown caused the membrane structure’s pores to develop. The membrane topology was rough with a wider range of heights and abnormalities at low NP concentrations, as the histogram of the 3D AFM pictures illustrates. On the other hand, the 2D photos showed that the surface smoothed out and had fewer peaks and valleys at high NP concentrations, which decreased the surface’s roughness. Surface scanning electron microscopy pictures demonstrated that when the membrane’s structure evolved from narrow to broad porosity with uneven expansion of porous patches, adding more nanoparticles increased the water flow. However, cross-sectional SEM pictures showed that the membrane’s constituent parts were a thick porous layer with micropores and elongated finger structures that resembled pores, and a thin skin layer. The membrane’s porosity increased with increasing NP concentration, as demonstrated by porosity calculations and contact angle measurements. This improved selectivity, made the membrane less prone to fouling, and made cleaning safer and easier, particularly for hydrophilic foulants like proteins and polysaccharides. The addition of NPs resulted in an estimated 83% and 92% increase in the flow of pure water and bovine serum albumin (BSA), respectively. However, the BSA rejection initially dropped before increasing once again.
Wydawca
Rocznik
Tom
Strony
336--347
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
autor
- Polymer and Petrochemical Industries Engineering Department, College of Engineering Materials, University of Babylon, Hilla, Iraq
autor
- Polymer and Petrochemical Industries Engineering Department, College of Engineering Materials, University of Babylon, Hilla, Iraq
autor
- Materials Engineering Department, University of Technology, Baghdad, Iraq
Bibliografia
- 1. Garg, S., Chowdhury, Z.Z., Faisal, A.N.M., Rumjit, N.P., Thomas, P. 2022. Impact of industrial wastewater on environment and human health.Advanced Industrial Wastewater Treatment and Reclamation of Water: Comparative Study of Water Pollution Index during Pre-industrial, Industrial Period and Prospect of Wastewater Treatment for Water Resource Conservation, 197–209.
- 2. Karri, R.R., Ravindran, G., Dehghani, M.H. 2021. Wastewater—sources, toxicity, and their consequences to human health. In Soft computing techniques in solid waste and wastewater management. Elsevier, 3–33.
- 3. Medeiros, A.D.L.M.D., Silva Junior, C.J.G.D., Amorim, J.D.P.D., Durval, I.J.B., Costa, A.F.D.S., Sarubbo, L.A. 2022. Oily wastewater treatment: methods, challenges, and trends. Processes, 10(4), 743.
- 4. Saravanan, A., Kumar, P.S., Jeevanantham, S., Karishma, S., Tajsabreen, B., Yaashikaa, P.R., Reshma, B. 2021. Effective water/wastewater treatment methodologies for toxic pollutants removal: Processes and applications towards sustainable development. Chemosphere, 280, 130595.
- 5. Ata, R., Merdan, G.F., Töre, G.Y. 2021. Activated sludge process for refractory pollutants removal. In Removal of Refractory Pollutants from Wastewater Treatment Plants. CRC Pres,137–184.
- 6. Tsehaye, M.T., Assayie, A.A.Y., Besha, A.T.Y., Tufa, R.A.Y., Gebreyohannes, A.Y.Y. 2022. Membrane technology for water and wastewater treatment in Ethiopia: Current status and future prospects. Journal of Membrane Science and Research, 8(1).
- 7. Maroufi, N., Hajilary, N. 2023. Nanofiltration membranes types and application in water treatment: a review. Sustainable Water Resources Management, 9(5), 142.
- 8. Ahmad, T., Guria, C., Mandal, A. 2020. A review of oily wastewater treatment using ultrafiltration membrane: A parametric study to enhance the membrane performance. Journal of Water Process Engineering, 36, 101289.
- 9. Wang, Q., Lin, W., Chou, S., Dai, P., Huang, X. 2023. Pattern membrane for improving hydrodynamic properties and mitigating membrane fouling in water treatment: A review. Water Research, 119943.
- 10. El Batouti, M., Alharby, N.F. Elewa, M.M. 2021. Review of new approaches for fouling mitigation in membrane separation processes in water treatment applications. Separations, 9(1), 1.
- 11. Oliveira, C.P.M., Farah, I.F., Koch, K., Drewes, J.E., Viana, M.M., Amaral, M.C.S. 2022. TiO2 -Graphene oxide nanocomposite membranes: a review. Separation and Purification Technology, 280, 119836.
- 12. Alkhouzaam, A., Qiblawey, H. 2021. Functional GO-based membranes for water treatment and desalination: Fabrication methods, performance and advantages. A review. Chemosphere, 274, 129853.
- 13. Covaliu-Mierlă, C.I., Matei, E., Stoian, O., Covaliu, L., Constandache, A.C., Iovu, H., Paraschiv, G. 2022. TiO2 –based nanofibrous membranes for environmental protection. Membranes, 12(2), 236.
- 14. Amiri, S., Asghari, A., Vatanpour, V., Rajabi, M. 2021. Fabrication of chitosan-aminopropylsilane graphene oxide nanocomposite hydrogel embedded PES membrane for improved filtration performance and lead separation. Journal of Environmental Management, 294, 112918.
- 15. Sweet, W.J. 2014. Application of Conductive Thin Films and Selectively Patterned Metal Oxide Coatings on Fibers by Atomic Layer Deposition.
- 16. Aaij, R., Adeva, B., Adinolfi, M., Affolder, A., Ajaltouni, Z., Akar, S.,... & De Simone, P. 2014. Measurement of the B¯ 0–B0 and B¯ s0–Bs0 production asymmetries in pp collisions at s = 7 TeV. Physics Letters B, 739, 218–228.
- 17. de Carvalho, C.C., de Souza, M.P., da Silva, T.D., Gonçalves, L.A.G., Viotto, L.A. 2006. Soybeans crude oil miscella degumming utilizing ceramic membranes: transmembrane pressure and velocity effects. Desalination, 200(1–3), 543–545.
- 18. Mousa, S.A., Abdallah, H., Ibrahim, S.S., Khairy, S.A. 2023. Enhanced photocatalytic properties of graphene oxide/polyvinylchloride membranes by incorporation with green prepared SnO2 and TiO2 nanocomposite for water treatment. Applied Physics A, 129(12), 831.
- 19. Guo, K., Wang, Z., Pan, J., Liu, B., Wang, Y., Yue, Q., Gao, Y., Gao, B. 2022. Highly efficient Al-Ti gel as a coagulant for surface water treatment: Insights into the hydrolysate transformation and coagulation mechanism. Water Research, 221, 118826.
- 20. Buys, A.V., Van Rooy, M.J., Soma, P., Van Papendorp, D., Lipinski, B., Pretorius, E. 2013. Changes in red blood cell membrane structure in type 2 diabetes: a scanning electron and atomic force microscopy study. Cardiovascular diabetology, 12, 1–7.
- 21. Buys, A.V., Van Rooy, M.J., Soma, P., Van Papendorp, D., Lipinski, B., Pretorius, E. 2013. Changes in red blood cell membrane structure in type 2 diabetes: a scanning electron and atomic force microscopy study. Cardiovascular diabetology, 12, 1–7.
- 22. Somovilla-Gómez, F., Lostado-Lorza, R., Corral-Bobadilla, M., Escribano-García, R. 2020. Improvement in determining the risk of damage to the human lumbar functional spinal unit considering age, height, weight and sex using a combination of FEM and RSM. Biomechanics and modeling in mechanobiology, 19, 351-387.
- 23. Sinha Ray, S., Singh Bakshi, H., Dangayach, R., Singh, R., Deb, C.K., Ganesapillai, M., Chen, S.S., Purkait, M.K. 2020. Recent developments in nanomaterialsmodified membranes for improved membrane distillation performance. Membranes, 10(7), 140.
- 24. Farahbakhsh, J., Vatanpour, V., Khoshnam, M., Zargar, M. 2021. Recent advancements in the application of new monomers and membrane modification techniques for the fabrication of thin film composite membranes: A review. Reactive and Functional Polymers, 166, 105015.
- 25. Xu, H., Ding, M., Liu, S., Li, Y., Shen, Z., Wang, K. 2017. Preparation and characterization of novel polysulphone hybrid ultrafiltration membranes blended with N-doped GO/TiO2 nanocomposites. Polymer, 117, 198–207.
- 26. Zhang, W. H., Yin, M. J., Zhao, Q., Jin, C. G., Wang, N., Ji, S., Rit, C.L., Elimelech E.M., An, Q.F. 2021. Graphene oxide membranes with stable porous structure for ultrafast water transport. Nature Nanotechnology, 16(3), 337-343.
- 27. Tiraferri, A., Yip, N.Y., Phillip, W.A., Schiffman, J.D., Elimelech, M. 2011. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure. Journal of membrane science, 367(1–2), 340–352.
- 28. Schutjajew, K., Pampel, J., Zhang, W., Antonietti, M., Oschatz, M. 2021. Influence of pore architecture and chemical structure on the sodium storage in nitrogen‐doped hard carbons. Small, 17(48), 2006767.
- 29. Shah, A.I., Dar, M.U.D., Bhat, R.A., Singh, J.P., Singh, K., Bhat, S.A. 2020. Prospectives and challenges of wastewater treatment technologies to combat contaminants of emerging concerns. Ecological Engineering, 152, 105882.
- 30. Gul, A., Hruza, J., Yalcinkaya, F. 2021. Fouling and chemical cleaning of microfiltration membranes: A mini-review. Polymers, 13(6), 846.
- 31.Judd, S.J. 2017. Membrane technology costs and me. Water research, 122, 1–9.
- 32. Song, Y., Phipps, J., Zhu, C., Ma, S. 2023. Porous materials for water purification. Angewandte Chemie, 135(11), e202216724.
- 33. Kusworo, T.D., Kumoro, A.C., Aryanti, N., Utomo, D.P., Hasbullah, H., Lingga, F. F., Yulfarida, M., Dalanta, F., Kurniawan, T.A. 2022. Photocatalytic antifouling nanohybrid polysulfone membrane using the synergetic effect of graphene oxide and SiO2 for effective treatment of natural rubber-laden wastewater. Journal of Membrane Science, 657, 120663.
- 34. AbdulKadir, W.A.F.W., Ahmad, A.L., Seng, O.B., Lah, N.F.C. 2020. Biomimetic hydrophobic membrane: A review of anti-wetting properties as a potential factor in membrane development for membrane distillation (MD). Journal of Industrial and Engineering Chemistry, 91, 15–36.
- 35. Ahmad, T., Guria, C., Mandal, A. 2020. A review of oily wastewater treatment using ultrafiltration membrane: A parametric study to enhance the membrane performance. Journal of Water Process Engineering, 36, 101289.
- 36. Castro-Muñoz, R., González-Melgoza, L.L., García-Depraect, O. 2021. Ongoing progress on novel nanocomposite membranes for the separation of heavy metals from contaminated water. Chemosphere, 270, 129421.
- 37. Gul, A., Hruza, J., Yalcinkaya, F. 2021. Fouling and chemical cleaning of microfiltration membranes: A mini-review. Polymers, 13(6), 846.
- 38. Alipoori, S., Rouhi, H., Linn, E., Stumpfl, H., Mokarizadeh, H., Esfahani, M.R., Wujcik, E.K. 2021. Polymer-based devices and remediation strategies for emerging contaminants in water. ACS Applied Polymer Materials, 3(2), 549–577.
- 39. Babu, K.S., Amamcharla, J.K. 2023. Effect of bulk nanobubbles on ultrafiltration membrane performance: Physiochemical, rheological, and microstructural properties of the resulting skim milk concentrate dispersions. Journal of Food Engineering, 337, 111238.
- 40. Andersson, J. 2020. Interpolymer complexation of a polymer brush (Doctoral dissertation, Chalmers Tekniska Hogskola (Sweden)).
- 41. Tehrani, S.F., Bharadwaj, P., Chain, J.L., Roullin, V.G. 2023. Purification processes of polymeric nanoparticles: How to improve their clinical translation?.Journal of Controlled Release, 360, 591–612.
- 42. Nebol’Sin, V.A., Galstyan, V., Silina, Y.E. 2020. Graphene oxide and its chemical nature: Multi-stage interactions between the oxygen and graphene. Surfaces and Interfaces, 21, 100763.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5514ace2-b453-47af-9d8d-6e7ace3170da
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.