PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The forecast of mining-induced seismicity and the consequent risk of damage to the excavation in the area of seismic event

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Central Mining Institute has developed a method for forecasting the amount of seismic energy created by tremors induced by mining operations. The results of geophysical measurements of S wave velocity anomalies in a rock mass or the results of analytic calculations of the values of pressure on the horizon of the elastic layers are used in the process of calculating the energy. The calculation program which has been developed and adopted has been modified over recent years and it now enables not only the prediction of the energy of dynamic phenomena induced by mining but also the forecasting of the devastating range of seismic shock. The results obtained from this calculation, usually presented in a more readable graphic form, are useful for the macroscopic evaluation of locations that are potential sources of seismic energy. Forecasting of the maximum energy of seismic shock without prior knowledge of the location of the shock's source, does not allow shock attenuation that results from, for example, a distance of tremor source from the excavation which will be affected by seismic energy, to be taken into consideration. The phenomena of energy dissipation, which is taken into account in the forecasts, create a new quality of assessment of threat to the excavation. The paper presents the principle of a method of forecasting the seismic energy of a shock and the risk of damage to the excavation as a result of the impact of its energy wave. The solution assumes that the source of the energy shock is a resilient layer in which the sum of the gravitational stresses, resulting from natural disturbances and those induced by the conducted or planned mining exploitation, is estimated. The proposed solution assumes a spherical model for the tremor source, for which seismic energy is forecasted as a function of the longwall advance and the elementary value of seismic energy destroying the excavation. Subsequently, the following are calculated for the forecast of the seismic energy of a shock with the defined location of its source: value of the coefficient l of dispersion/attenuation of seismic energy and the flux of seismic energy at predetermined distances r from the tremor source. The proposed solution for forecasting the seismic energy of tremors and the level of risk of damage to the excavation during the functioning of mining operations is helpful in the development of bump prevention. Changing the intensity of mining operations enables the level of the seismic energy induced by the operations both at the stage of its development and during the excavation of a seam using the longwall method to be “controlled”. The presented solution has been produced for an area disturbed by the mining of coal seam 510 in the hard coal mine, Jas-Mos. An original program developed by CMI was used for the calculations.
Rocznik
Strony
1--7
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
  • Department of Rockburst and Rock Mechanics, Central Mining Institute, 40-166 Katowice, Plac Gwarkow 1, Poland
  • Department of Rockburst and Rock Mechanics, Central Mining Institute, 40-166 Katowice, Plac Gwarkow 1, Poland
Bibliografia
  • 1. Aki, K., & Richards, P. G. (1980). Quantitative Seismology. Theory and Methods. New York: W. H. Freeman and Company.
  • 2. Drzewiecki, J. (2002a). Prędkość eksploatacji a zagrożenie wyrobisk górniczych zjawiskami dynamicznymi [The mining extraction rate vs. the hazard in mine workings presented by dynamic effects]. Bezpieczeństwo Pracy i Ochrona Środowiska w Górnictwie, (1), 18-21.
  • 3. Drzewiecki, J. (2002b). Zniszczenie wyrobiska górniczego w następstwie ruchu skał [Destruction of mine working in consequence of the movement of rocks]. In Tąpania 2002: Międzynarodowe Sympozjum Naukowo-Techniczne, Ustroń, Polska, 12-15.11.2002: Stan badań i profilaktyki: Referaty (pp. 49-58). Katowice: Główny Instytut Górnictwa.
  • 4. Drzewiecki, J. (2004). Wpływ postępu frontu ściany na dynamikę niszczenia górotworu karbońskiego [Effect of longwall face advance rate on carboniferous rock strata dynamics and destruction]. Prace Naukowe Głównego Instytutu Górnictwa. Studia, Rozprawy, Monografie, 860. Katowice: Główny Instytut Górnictwa.
  • 5. Drzewiecki, J. (2009). Prawdopodobieństwo zniszczenia wyrobiska górniczego w następstwie wstrząsu sejsmicznego [Probability of destruction of mine working as a result of seismic events]. Górnictwo i Geoinżynieria, 33(1), 125-132.
  • 6. Drzewiecki, J. (2015). Determination of the value of the elastic modulus of the rock mass Esrm disturbed by longwall operation. Acta Geodynamica et Geomaterialia, 12(4), 377-386.
  • 7. Drzewiecki, J., & Iwaszenko, S. (2008). Skomputeryzowane prognozowanie energii zjawisk dynamicznych indukowanych eksploatacją górniczą [Program of forecasting energy of dynamic events caused by exploitation]. Przegląd Górniczy, 64(4), 18-25.
  • 8. Gibowicz, S. (1989). Mechanizm ognisk wstrząsów górniczych [Mechanism of seismic events induced by mining]. Warszawa, Łódź: PWN.
  • 9. Konopko, W. (1994). Doświadczalne podstawy kwalifikowania wyrobisk górniczych w kopalniach węgla kamiennego do stopni zagrożenia tąpaniami [Experimental base mine workings eligibility in coal mines to degree of danger of rock burst]. Prace Naukowe Głównego Instytutu Górnictwa, 795. Katowice: Główny Instytut Górnictwa.
  • 10. Liszkowski, J., & Stochlik, J. (1977). Szczelinowatość masywów skalnych [Rock massifs fracturing]. Warszawa: Wydawnictwa Geologiczne.
  • 11. Lurka, A. (1996). A certain new method for seismic network optimisation and its consequences. Acta Montana A, 10(102), 171-178.
  • 12. McGarr, A., Spottiswoode, S. M., Gay, N. C., & Ortlepp, W. D. (1979). Observations relevant to seismic driving stress, stress drop, and efficiency. Journal of Geophysical Research, 84(B5), 2251-2261.
  • 13. Mutke, G., Lurka, A., & Dubiński, J. (2009). Seismic monitoring and rock burst hazard assessement in deep Polish coal mines - case study of rock burst on april 16, 2008 in Wujek-Slask coal mine. In C. A. Tang (Ed.), 7th International Symposium on Rockburst and Seismicity in Mines (pp. 1413-1424). New York: Rinton Press.
  • 14. Piernikarczyk, A., & Drzewiecki, J. (2008). Ocena trafności prognozy energii sejsmicznej w oparciu o zbiór zjawisk z 15 kopalń GZW [Evaluation of the accuracy prognostic of seismic energy based on data set from 15 mines in USCB area]. Prace Naukowe GIG. Górnictwo i Środowisko, (VII), 227-232.
  • 15. Podgorski, K., & Kleta, H. (1980). Stan naprężenia i odkształcenia w górotworze traktowanym jako ciało transwersalnie izotropowe w sąsiedztwie szybu [The state of stress and deflections in rocks considered as transversal isotropic body in areas adjacent to the shaft]. Zeszyty Naukowe Politechniki Śląskiej. Górnictwo, 104, 19-27.
  • 16. Shearer, P. M. (2009). Introduction to seismology (2nd ed.). Cambridge: University Press.
  • 17. Stec, K. (2015). Geomechanical conditions of causes of high-energy rock mass tremors determined based on the analysis of parameters of focal mechanisms. Journal of Sustaninable Mining, 14(1), 46-55.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-551418ef-4702-45a7-93a2-29a52aa14dd5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.