Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
There have been investigated potential evaluation of equilibrium adsorption isotherm for the removal of nitrates from water solutions using two types of char produced in commercial-scale pyrolysis based on recycled waste rubber tires. Liquid phase adsorption studies were performed under batch conditions and maximum adsorption capacity was determined. Equilibrium data were mathematically modelled using two-parameters Langmuir, Freundlich, three-parameters Redlich-Peterson, Toth, Dubinin-Radushkevich, Radke-Praushnitz, combined Langmuir-Freundlich and four-parameters Fritz-Schlunder, Marczewski-Jaroniec, Bi-Langmuir adsorption models. Obtained results revealed the potential use of the studied char adsorbents for nitrates removal from aqueous media (the maximum adsorption capacity at equilibrium 10.07 mg/g, have been achieved for CH-1 char). The Langmuir-Freundlich isotherm had the best fit for the adsorption experimental data over the whole concentration range. The highest percentage of NO3 removal efficiency onto CH-2 char achieved in NO3 initial concentration range from 26.44 to 66.55mg/L reaching values in the range of from 80.74 to 78.7%.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
246--256
Opis fizyczny
Bibliogr. 32 poz., fig., tab.
Twórcy
autor
- Department of Water Purification and Protection, Rzeszow University of Technology, Al. Powstancow Warszawy 12, 35-959 Rzeszow, Poland
autor
- Department of Technology and Environmental Engineering Systems, Bialystok University of Technology, Wiejska 45A, 15-351 Bialystok, Poland
autor
- Department of Technology and Environmental Engineering Systems, Bialystok University of Technology, Wiejska 45A, 15-351 Bialystok, Poland
Bibliografia
- 1. Hejna, A., Korol, J., Przybysz-Romatowska, M., Zedler, L., Chmielnicki, B., Formela, K. Waste tire rubber as low-cost and environmentally-friendly modifier in thermoset polymers - A review. Waste Management 2020; 108: 106–118. doi:10.1016/j. wasman.2020.04.032.
- 2. Szatyłowicz, E., Edizsoy, G., Öztürk, O., Yanaşık, I., Siemiończyk, E., Tabor, A., Skoczko, I. Multi- dimensional Analysis of Air Pollution Measurements Concentration with PM10 and PM2.5 on the Campus of the Bialystok University of Technology Adv. Sci. Technol. Res. J. 2023; 17(3): 226–235. doi:10.12913/22998624/166384.
- 3. Saleh, T.A., Gupta, V.K. Processing methods, characteristics and adsorption behavior of tire derived carbons: A review. Advances in Colloid and Interface Science 2014; 211: 93–101. doi:10.1016/j.cis.2014.06.006.
- 4. Mui, E.L.K., Cheung, W.H., McKay, G. Tyre char preparation from waste tyre rubber for dye removal from effluents 2010; 175(1–3): 151–158. doi:10.1016/j.jhazmat.2009.09.142.
- 5. Dyrektywa Rady (91/676/EWG) z dnia 12 grudnia 1991 r. dotycząca ochrony wód przed zanieczyszczeniami powodowanymi przez azotany pochodzenia rolniczego Dz.U.UE.L.1991.375.1 z dnia 1991.12.31
- 6. Ustawa z dnia 20 lipca 2017 r. Prawo wodne (Dz. U. 2017, poz. 1566 z późn. zm.)
- 7. Bhatnagar, A., Kumar, E., Sillanpaa, M., Nitrate removal from water by nano-alumina: character- ization and sorption studies. Chem. Eng. L. 2010; 163(3): 317–323.
- 8. Chow, C.K., Hong, C.B.,. Dietary vitamin E and selenium and toxicity of nitrite and nitrate. Toxicology 2002; 180(2): 195–207.
- 9. Yukiyoshi, T., Yusuke, Y., Yoshimasa, A., Motoi, M. Effect of two types of adsorption sites of activated carbon fibers on nitrate ion adsorption. Journal of Environmental Management, 2021. doi: 10.1016/j. jenvman.2021.112484.
- 10. Wettstein, Z.S., Yarid, N.A., Shah, S. “Fatal methaemoglobinemia due to intentional sodium nitrite ingestion”. BMJ Case Reports. 2022 15(12): e252954. doi: 10.1136/bcr-2022-252954.
- 11. Rozporządzenie Ministra Zdrowia z dnia 7 grudnia 2017 r. w sprawie jakości wody przeznaczonej do spożycia przez ludzi, Dz.U RP Poz. 2294 (Regulation of the Minister of Health of December 7, 2017 on the quality of water intended for human consumption; 2294)
- 12. Skoczko, I., Guminski, R. Tests on the Application of Various Types of Biomass for Activated Carbon Production, J. Ecol. Eng. 2024; 25(1): 285–302. doi: https://doi.org/10.12911/22998993/174223
- 13. Modrzejewska, Z., Skwarczyńska, A., Zarzycki, R. Process kinetics and equilibrium in Cu2+ sorption in hydrogel chitosan granules, Environmental Engineering III 2010. EID:2-s2.0-85055377531. Part of DOI: 10.1201/b10566
- 14. Lin, C.-I., Wang, L-H. Rate equations and isotherms for two adsorption models, J. Chin. Inst. Chem. Eng. 2008: 39579−585.
- 15. Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum, J. Amer. Chem. Soc. 1918; 40: 1361–1403.
- 16. Dabrowski, A. Adsorption—from theory to practice, Adv. Colloid Interface Sci. 93 (2001) 135–224
- 17. https://www.manualslib.com/manual/1202264/ Hach-Dr2400.html?page=421#manual
- 18. Kosmulski “ Surface charging and points of zero charge”, Surfactant science series, CRC. Press/Tay- lor & Francis Group 2009; 145.
- 19. Skwarczyńska-Wojsa, A., Puszkarewicz, A. Re- moval of Acetaminophen from Aqueous Solutions in an Adsorption Process Materials 2024, 17(2): 431. doi: 10.3390/ma17020431.
- 20. Katal, R., Baei, S.M., Rahmati, H.T., Esfandian, H. Kinetic, isotherm and thermodynamic study of nitrate adsorption from aqueous solution using modified rice husk. 2012; 18(1): 295–302. 10.1016/j. jiec.2011.11.035.
- 21. Wieland E., Stumm W. Dissolution kinetics of kaolinite in acidic aqueous solutions at 25 °C. 1992; 56(9): 3339–3355. doi:10.1016/0016-7037(92)90382-s.
- 22. Karaca S., Gürses A., Açıkyıldız M., Ejder M. (Korucu). Adsorption of cationic dye from aqueous solutions by activated carbon. 2008; 115(3): 376–382. doi: 10.1016/j.micromeso.2008.02.008.
- 23. Bakatula, E.N., Richard, D., Neculita, C.M., Zagury, G.J. Determination of point of zero charge of natural organic materials. Environmental Science and Pollution Research 2018; 25(8): 7823–7833. doi:10.1007/s11356-017-1115-7.
- 24. Sakurai, K., Ohdate, Y., Kyuma, K.. Comparison of salt titration and potentiometric titration methods for the determination of Zero Point of Charge (ZPC). Soil Science and Plant Nutrition 1988; 34(2), 171–182. doi: 10.1080/00380768.1988.10415671.
- 25. Emad N. El Qada; Stephen J. Allen; Gavin M. Walker. Adsorption of Methylene Blue onto activated carbon produced from steam activated bituminous coal: A study of equilibrium adsorption isotherm 2006; 124(1–3): 103–110. doi:10.1016/j.cej.2006.08.015.
- 26. Soco, E., Domon, A., Papciak, D., Michel, M., Pająk, D., Cieniek, B., Azizi, M. Characteristics of Adsorption/Desorption Process on Dolomite Adsorbent in the Copper(II) Removal from Aqueous Solutions. Materials 2023, 16(13): 4648. doi: 10.3390/ma16134648.
- 27. Cardenas-Peña, A.M., Ibanez, J.G., Vasquez-Medrano, R. Determination of the Point of Zero Charge for Electrocoagulation Precipitates from an Iron Anode. Int. J. Electrochem. Sci. 2012; 7: 6142–6153.
- 28. Railsback’s Some Fundamentals of Mineralogy and Geochemistry. https://railsback.org/Fundamentals/8 150PointofZeroCharge05Pt1P.pdf
- 29. Skwarczynska-Wojsa, A.L., Chacuk, A., Modrzejewska, M., Puszkarewicz, A. Sorption of calcium by chitosan hydrogel: Kinetics and equilibrium. Desalination 2022; 540: 116024. doi: 10.1016/j. desal.2022.116024.
- 30. Joseph, I.V., Tosheva, L., Miller, G., Doyle, A.M. FAU- Type Zeolite Synthesis from Clays and Its Use for the Simultaneous Adsorption of Five Divalent Metals from Aqueous Solutions, Materials 2021; 14(13): 3738.
- 31. Marquardt, D.W. An algorithm for last-squares estimation of nonlinear parameter, J. Soc. Indust. Appl. Math 1963; 11(2): 431.
- 32. Saied Azizian, Setareh Eris, Chapter 6 - Adsorption isotherms and kinetics, Interface Science and Technology 2021; 33: 445–509. doi: 10.1016/ B978-0-12-818805-7.00011-4.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-550fe878-4d5a-4993-a913-b90ad5ecfe90