PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The assessment of artificial neural network rainfall-runoff models under different input meteorological parameters. Case study: Seybouse basin, Northeast Algeria

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Over the past two decades, artificial neural networks (ANN) have exhibited a significant progress in predicting and modeling non-linear hydrological applications, such as the rainfall-runoff process which can provide useful contribution to water resources planning and management. This research aims to test the practicability of using ANNs with various input configurations to model the rainfall-runoff relationship in the Seybouse basin located in a semi-arid region in Algeria. Initially, the ANNs were developed for six sub-basins, and then for the complete watershed, considering four different input configurations. The 1st (ANN IP) considers only precipitation as an input variable for the daily flow simulation. The 2nd (ANN II) considers the 2nd variable in the model input with precipitation; it is one of the meteorological parameters (evapotranspiration, temperature, humidity, or wind speed). The third (ANN IIIP,T,HUM) considers a combination of temperature, humidity, and precipitation. The last (ANN VP,ET,T,HUM,Vw) consists in collating different meteorological parameters with precipitation as an input variable. ANN models are made for the whole basin with the same configurations as specified above. Better flow simulations were provided by (ANN IIP,T) and (ANN IIP,Vw) for the two stations of Medjez-Amar II and Bordj-Sabath, respectively. However, the (ANN VP,ET,T,HUM,Vw)’s application for the other stations and also for the entire basin reflects a strategy for the flow simulation and shows enhancement in the prediction accuracy over the other models studied. This has shown and confirmed that the more input variables, as more efficient the ANN model is.
Wydawca
Rocznik
Tom
Strony
38--47
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • University of Larbi-Ben-M’hidi, Faculty of Sciences and Applied Sciences, Department of Hydraulic, Laboratory of Ecology and Environment, PO Box 358, 04000 Oum El Bouaghi, Algeria
autor
  • University of Larbi-Ben-M’hidi, Faculty of Sciences and Applied Sciences, Department of Hydraulic, Laboratory of Ecology and Environment, PO Box 358, 04000 Oum El Bouaghi, Algeria
  • University of Larbi-Ben-M’hidi, Faculty of Sciences and Applied Sciences, Department of Hydraulic, Laboratory of Ecology and Environment, PO Box 358, 04000 Oum El Bouaghi, Algeria
Bibliografia
  • AICHOURI I., HANI A., BOUGHERIRA N., DJABRI L., CHAFFAI H., LALLAHEM S. 2015. River flow model using artificial neural networks. Energy Procedia. Vol. 74 p. 1007–1014. DOI 10.1016/j.egy-pro.2015.07.832.
  • BENZINEB K., REMAOUN M. 2016. Daily rainfall-runoff modelling by neural networks in semi-arid zone: Case of Wadi Ouahrane’s basin. Journal of Fundamental and Applied Sciences. Vol. 8 p. 956–970. DOI 10.4314/jfas.v8i3.17.
  • BHADRA A., BANDYOPADHYAY A., SINGH R., RAGHUWANSHI N.S. 2010. Rainfall-runoff modeling: comparison of two approaches with different data requirements. Water Resources Management. Vol. 24 p. 37–62. DOI 10.1007/s11269-009-9436-z.
  • BIED-CHARRETON M., PETIT O., MAKKAOUI R. 2004. La gouvernance des ressources en eau dans les pays en développement [Governance of water resources in developing countries]. Cahier du C3ED. No. 04-01. Centre d’Economie et d’Ethique pour l’Environnement et le Développement, Université de Versailles St-Quentin- en-Yvelines pp. 43.
  • BRAHMIA N., CHAAB S. 2013. Gestion des ressources en eau dans le bassin versant de la Moyenne Seybouse. En: Proceeding du Séminaire International sur l'Hydrogéologie et l'Environnement SIHE 2013 Ouargla [Management of water resources in the Moyenne Seybouse watershed. In: Proceeding of the International Seminar on Hydrogeology and Environment SIHE 2013 Ouargla] [online] p. 127–130. [Access 20.07.2020]. Available at: https://dspace.univ-ouargla.dz/jspui/bitstream/123456789/11953/ 1/35.pdf
  • CHERGUI A. 2019. Modelisation pluie-debit par reseaux de neurones artificiels du bassin versant de Sybousse [Rainfall-runoff modeling by artificial neuron networks of the Sybousse watershed]. MSc Thesis. Oum El-Bouaghi, Algeria. Université L’Arbi Ben M’hidi pp. 100 + Annexes.
  • COULIBALY P. 1999. Prévision hydrologique par réseaux de neurones artificiels : état de l’art [Hydrological forecasting by artificial neural networks: state of the art]. Canadian Journal of Civil Engineering. Vol. 26. Iss. 3 p. 293–304. DOI 10.1139/l98-069.
  • Décret exécutif N°96-100 du 17 Сhаоuаl 1416 correspondant аu 06 mars 1996 portant définition du bassin hydrographiques et fixant le status- type des établissements publics de gestion [Executive Decree No. 96-100 of 6 March 1996 defining the hydrographic basin and setting the standard status of public management establishments] [online]. [Access 20.07.2020]. Available at: http://extwprlegs1.fao.org/docs/pdf/alg41379.pdf
  • GRAYSON R.B., MOORE I.D., MCMAHON T.A. 1992. Physically based hydrologic modeling: 2. Is the concept realistic?. Water Resources Research. Vol. 28 p. 2659–2666. DOI 10.1029/92WR01259.
  • KASHANI M.H., GHORBANI M.A., DINPASHOH Y., SHAHMORAD S. 2014. Comparison of Volterra model and artificial neural networks for rainfall–runoff simulation. Natural Resources Research. Vol. 23 p. 341–354. DOI 10.1007/s11053-014-9235-y.
  • LEVENBERG K. 1944. A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics. Vol. 2 p. 164–168. DOI 10.1090/QAM/10666.
  • LIN G.-F., CHEN G.-R. 2008. A systematic approach to the input determination for neural network rainfall–runoff models. Hydrological Processes. Vol. 22 p. 2524–2530. DOI 10.1002/ hyp.6849.
  • MACHADO F., MINE M., KAVISKI E., FILL H. 2011. Monthly rainfall–runoff modelling using artificial neural networks. Hydrological Sciences Journal. Vol. 56 p. 349–361. DOI 10.1080/02626667.2011.559949.
  • MARQUARDT D.W. 1963. An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics. Vol. 11 p. 431–441. DOI 10.1137/0111030.
  • MINNS A.W., HALL M.J. 1996. Artificial neural networks as rainfall-runoff models. Hydrological Sciences Journal. 41 p. 399–417. DOI 10.1080/02626669609491511
  • NASH J.E., SUTCLIFFE J.V. 1970. River flow forecasting through conceptual models part I – A discussion of principles. Journal of Hydrology. Vol. 10 p. 282–290. DOI 10.1016/0022-1694(70) 90255-6.
  • RAJURKAR M.P., KOTHYARI U.C., CHAUBE U.C. 2002. Artificial neural networks for daily rainfall–runoff modelling. Hydrological Sciences Journal. Vol. 47 p. 865–877. DOI 10.1080/ 02626660209492996.
  • RANDRIANARIVONY R.N., LAURET P., RANDRIAMANANTANY Z.A., GATINA J.C. 2009. Modélisation du régime annuel des petites rivières en vue d’installation de microcentrales hydroélectriques [Modeling of the annual regime of small rivers with a view to installing micro hydroelectric power stations]. Afrique Science: Revue Internationale des Sciences et Technologie. No. 05 p. 39–49.
  • REZAEIANZADEH M., STEIN A., TABARI H., ABGHARI H., JALALKAMALI N., HOSSEINIPOUR E.Z., SINGH V.P. 2013. Assessment of a conceptual hydrological model and artificial neural networks for daily outflows forecasting. International Journal of Environmental Science and Technology. Vol. 10 p. 1181–1192. DOI 10.1007/ s13762-013-0209-0.
  • SRINIVASULU S., JAIN A. 2006. A comparative analysis of training methods for artificial neural network rainfall–runoff models. Applied Soft Computing. Vol. 6 p. 295–306. DOI 10.1016/j. asoc.2005.02.002.
  • VIDYARTHI V.K., JAIN A., CHOURASIYA S. 2020. Modeling rainfall-runoff process using artificial neural network with emphasis on parameter sensitivity. Modeling Earth Systems and Environment. Vol. 6 p. 2177–2188. DOI 10.1007/s40808-020-00833-7.
  • VILANOVA R.S., ZANETTI S.S., CECILIO R.A. 2019. Assessing combinations of artificial neural networks input/output parameters to better simulate daily streamflow: Case of Brazilian Atlantic rainforest watersheds. Computers and Electronics in Agriculture. Vol. 167, 105080. DOI 10.1016/j.compag.2019.105080.
  • YASEEN Z.M. 2015. Artificial intelligence based models for stream-flow forecasting: 2000–2015. Journal of Hydrology. Vol. 530 p. 829– 844. DOI 10.1016/j.jhydrol.2015.10.038.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5503c432-45af-4082-bc31-1ca476cbd09d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.