Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
4th Jagiellonian Symposium on Advances in Particle Physics and Medicine, Krakow, 10-15 July 2022
Języki publikacji
Abstrakty
Objectives: Intervertebral disc segmentation is one of the methods to diagnose spinal disease through the degener ation in asymptomatic and symptomatic patients. Even though numerous intervertebral disc segmentation tech niques are available, classifying the grades in the inter vertebral disc is a hectic challenge in the existing disc segmentation methods. Thus, an effective Whale Spine Generative Adversarial Network (WSpine-GAN) method is proposed to segment the intervertebral disc for effective grade classification. Methods: The proposed WSpine-GAN method effectively performs the disc segmentation, wherein the weights of Spine-GAN are optimally tuned using Whale Optimization Algorithm (WOA). Then, the refined disc features, such as pixel-based features and the connectivity features are extracted. Finally, the K-Nearest Neighbor (KNN) classifier based on the pfirrmann’s grading system performs the grade classification. Results: The implementation of the grade classification strategy based on the proposed WSpine-GAN and KNN is performed using the real-time database, and the perfor mance based on the metrics yielded the accuracy, true positive rate (TPR), and false positive rate (FPR) values of 97.778, 97.83, and 0.586% for the training percentage and 92.382, 90.580, and 1.972% for the K-fold value. Conclusions: The proposed WSpine-GAN method effec tively performs the disc segmentation by integrating the Spine-GANmethod and WOA. Here, the spinal cord images are segmented using the proposed WSpine-GAN method by tuning the weights optimally to enhance the performance of the disc segmentation.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
55--68
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
- Department of Computer Engineering, Late G. N. Sapkal College of Engineering, Nashik, Maharashtra 422213, India
autor
- Shri Guru Gobind Singhji Institute of Engineering and Technology, Vishnupuri, Nanded, Maharashtra, India
autor
- Shri Guru Gobind Singhji Institute of Engineering and Technology, Vishnupuri, Nanded, Maharashtra, India
autor
- M.G.M.’s College of Engineering Kamothe, Navi Mumbai, Maharashtra, India
Bibliografia
- 1. Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 2001;26:1873-8.
- 2. Han Z, Wei B, Mercado A, Leung S, Li S. Spine-GAN: semantic segmentation of multiple spinal structures. Med Image Anal 2018;50:23-35.
- 3. Matsumoto M, Fujimura Y, Suzuki N, Nishi Y, Nakamura M, Yabe Y, et al. MRI of cervical intervertebral discs in asymptomatic subjects. J Bone Joint Surg 1998;80:19-24.
- 4. Tozzi R, Traill Z, Campanile RG, Ferrari F, Majd HS, Nieuwstad J, et al. Porta hepatis peritonectomy and hepato-celiac lymphadenectomy in patients with stage IIIC-IV ovarian cancer: diagnostic pathway, surgical technique and outcomes. Gynecol Oncol 2016;143:35-9.
- 5. Teresi LM, Lufkin RB, Reicher MA, Moffit BJ, Vinuela FV, Wilson GM, et al. Asymptomatic degenerative disk disease and spondylosis of the cervical spine MR imaging. Radiology 1987; 164:83-8.
- 6. An H, Anderson P, Haughton V, Iatridis J, Kang J, Lotz J, et al. Introduction. Disc degeneration: summary. Spine 2004;29:2677-8.
- 7. Modic MT, Ross JS. Lumbar degenerative disk disease. Radiology 2007;245:43-61.
- 8. Milette P. The proper terminology for reporting lumbar intervertebral disk disorders. Am J Neuroradiol 1997;18: 1859-66.
- 9. Michopoulou SK, Costaridou L, Panagiotopoulos E, Speller R, Panayiotakis G, Todd-Pokropek A. Atlas-based segmentation of degenerated lumbar intervertebral discs from MR images of the spine. IEEE Trans Biomed Eng 2009;56:2225-31.
- 10. Hashia B, Mir AH. Texture features’ based classification of MR images of normal and herniated intervertebral discs. Multimed Tool Appl 2018;79:15171-90.
- 11. Lagrari F. Image steganography for pixel prediction using K nearest neighbor. Multimedia Res 2020;3:11-9.
- 12. Preetha N, Praveena S. Multiple feature sets and SVM classifier for the detection of diabetic retinopathy using retinal images. Multimedia Res 2018;1:17-26.
- 13. Thomas R, Dr Rangachar MJS. Fractional rider and multi-kernel based spherical SVM for low resolution face recognition. Multimedia Res 2019;2:35-43.
- 14. Waykar SB, Bharathi CR. Multimodal features and probability extended nearest neighbor classification for content-based lecture video retrieval. J Intell Syst 2017;26:585-99.
- 15. Athertya JS, Kumar GS, Govindaraj J. Detection of modic changes in MR images of spine using local binary patterns. Biocybern Biomed Eng 2019;39:17-29.
- 16. Oktay AB, Albayrak NB, Akgul YS. Computer aided diagnosis of degenerative intervertebral disc diseases from lumbar MR images. Comput Med Imag Graph 2014;38:613-9.
- 17. Hu M-K. Visual pattern recognition by moment invariants. IEEE Trans Inf Theor J Opt Soc Am 1962;8:179-87.
- 18. Vanopbroek A, Lijn FV, Bruijne MD. Automated brain-tissue segmentation by multi-feature SVM classification. MIDAS J 2013. https://mrbrains13.isi.uu.nl/wp-content/uploads/ BIGR2.pdf.
- 19. Militzer A, Vega-Higuera F. Probabilistic boosting trees for automatic bone removal from CT angiography images. Inter Soc Opt Phot 2009:725946.
- 20. Christ MJ, Sivagowri S, Babu PG. Segmentation of brain tumors using meta heuristic algorithms. Open J Commun Software 2014; 1:1-10.
- 21. Brindha D, Nagarajan N. An efficient automatic segmentation of spinal cord in MRI images using interactive random walker (RW) with artificial bee colony (ABC) algorithm. Multimed Tool Appl 2018;79:1-22.
- 22. Lu JT, Pedemonte S, Bizzo B, Doyle S, Andriole KP, Michalski MH, et al. DeepSPINE: automated lumbar vertebral segmentation, disc-level designation, and spinal stenos is grading using deep learning 2018;85:403-19. arXiv preprint arXiv:1807. 10215.
- 23. Zhu X, He X, Wang P, He Q, Gao D, Cheng J, et al. A method of localization and segmentation of intervertebral discs in spine MRI based on Gabor filter bank. Biomed Eng Online 2016;15:32.
- 24. Waldenberg C, Hebelka H, Brisby H, Lagerstrand KM. MRI histogram analysis enables objective and continuous classification of intervertebral disc degeneration. Eur Spine J 2018;27:1042-8.
- 25. Mahdy LN, Ezzat KA, Hassanien AE. Automatic detection system for degenerative disk and simulation for artificial disc replacement surgery in the spine. ISA Trans 2018;81:244-58.
- 26. Li X, Dou Q, Chen H, Fu CW, Qi X, Belavý DL, et al. 3D multi-scale FCN with random modality voxel dropout learning for intervertebral disc localization and segmentation from multi-modality MR images. Med Image Anal 2018;45:41-54.
- 27. Mirjalili S, Lewis A. The whale optimization algorithm. Adv Eng Software 2016;95:51-67.
- 28. Ludwig O, Nunes U. Novel maximum-margin training algorithms for supervised neural networks. IEEE Trans Neural Network 2010; 21:972-84.
- 29. Rini DP, Shamsuddin SM, Yuhaniz SS. Particle swarm optimization: technique, system and challenges. Int J Comput Appl 2011;14: 19-27.
- 30. Wang G-G, Deb S, Cui Z. Monarch butterfly optimization. Neural Comput Appl 2015;31:1-20.
Uwagi
Opublikowane przez Sciendo. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-54fedbdf-f93d-4ff3-9434-99f0a36433f6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.